Reg. No.....

Name:

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2025 COMPUTER SCIENCE AND MATHEMATICS (DOUBLE MAIN) GDMA6B10T: NUMERICAL ANALYSIS

Time: 2 Hours

Maximum: 60 Marks

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 20 marks)

- 1. What is the remainder term or bound for the error involved in approximating a function f(x) by an interpolating polynomial P(x).
- 2. What is the difference equation associated with Euler's method?
- 3. Define forward difference and backward difference.
- 4. Express $\nabla^2 f_3$ in terms of the values of the function.
- Write the conditions for applying Bisection algorithm to find a root for f(x) = 0 on the interval [a,b].
- 6. Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4) and (5, 1).
- 7. Write Second derivative midpoint Formula to approximate f''(x) at x_0 .
- 8. Write Simpson's three-eighths rule for approximating $\int_a^b f(x) dx$.
- 9. Find h when approximating $\int_0^2 \frac{1}{1+x} dx$ using Trapezoidal rule.
- 10. Give an example of a Lipschitz function f(t, y).
- 11. Define Numerical quadrature.
- 12. Write number of iteration necessary to approximate y(1.2) from the IVP.

y' = y - t^2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5 h = 0.2 using Runge Kutta method of order 4.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 30 marks)

13. Use Stirling's formula to approximate f(0.43) for the following data:

Х	:	0.0	0.2	0.4	0.6	0.8
f (x)	:	1.00000	1.22140	1.49182	1.82212	2.22554

14. Compare the Trapezoidal rule when approximating $\int_0^2 x^2 dx$.

- 15. Using Runge-Kutta method of order four to find w_1 for the following initial-value problem: $y' = \cos 2t + \sin 3t$, $0 \le t \le 1$, y(0) = 1, with h = 0.5.
- 16. Use a fixed-point iteration method to determine a solution accurate to within 10^{-4} for x = tan x, for x in [4, 5].
- 17. Show that there is a unique solution to the initial-value problem $y' = 1 + t \sin(ty)$, $0 \le t \le 2$, y(0) = 0.
- 18. For the given function $f(x) = \tan x$, let $x_0 = 0$, $x_1 = 0.6$. Construct interpolation polynomial of degree one to approximate f (0.45), and find the absolute error.
- 19. Use Euler's method to approximate the solution for the following initial-value problem: $y' = 1 + (t - y)^2$, $2 \le t \le 3$, y(2) = 1, with h = 0.5

SECTION C: Answer any one question. The question carries ten marks.

- 20. The equation $x^2 10 \cos x = 0$ has two solutions, ± 1.3793646 . Use Newton's method to approximate the solution to within 10^{-5} with $p_0 = -100$.
- 21. Approximate $\int_0^2 \frac{1}{1+x} dx$ using:
 - a. Trapezoidal rule and find absolute error.
 - b. Simpson's rule and find absolute error.

(1 x 10 = 10 Marks)