D6BHM2202	(Pages)	: 4)	Reg.No		
			Name:		
SIXTH S	EMESTER DEG	REE EXAM	INATION, APR	IL 2025	
	B.Sc. HONOU	RS IN MAT	THEMATICS		
	GMAH6B25	T - GRAPH	THEORY		
Time: 3 Hours			Maximum Marks: 80		
SECTION A: Answer all the questions. Each carries 1 mark					
Choose the corre	ect answer				
1. If e_1 is an edge v e_1 and e_2 are cal	with end vertices a and led	and b and e_2 is	an edge with end v	vertices a and b then	
A) loops B	B) parallel edges	C) bridges	D) simple ed	ges.	
$0 L \neq C V W $:	:			
2. Let $G = K_4$. Wh	ich of the following	is not true.			
A) G is simple.	B) G is connected by G	eted. C)	G is bipartite.	D) G has 6 edges.	

- 3. Let G be a tree with 10 vertices. The number of edges of G is B) $\binom{10}{2}$ C) 11 D) 10! A) 9
- 4. Which of the following graphs is a planar graph? C) K_4 A) K_5 B) $K_{3,3}$ D) Peterson Graph
- 5. Let n, e, f denote the number of vertices, edges, faces respectively of a plane graph G, then which of the following is true?

B) n - e - f = 2 C) n + e - f = 2 D) n - e + f = 2A) n + e + f = 2

Fill in the blanks

6. The length of the longest path in the following graph is

7. If the vertices of a walk are distinct then the walk is called a

(P T O)

- 8. A trail in a graph G that includes every of G is called an Euler trail.
- 9. G is a connected plane graph with 42 edges and 14 faces. Then the number of vertices of G is \dots .
- 10. Let G be a nonempty bipartite graph. Then $\chi(G) = \dots$

 $(10 \ge 1 = 10 \text{ marks})$

SECTION B: Answer any 8 questions. Each carries 2 marks

- 11. Sketch the graph $K_{3,3}$.
- 12. Find the odd one out.

- 13. Define cycle in a graph
- 14. Write a trail in the graph

15. Prove that every tree with at least two vertices is bipartite.

16. Find $\kappa(G)$ if G is the following graph.

- 17. Sketch K_5 and find an Euler tour in K_5 .
- 18. State Hall's Marriage Theorem.
- 19. Sketch an example of a non-planar graph.
- 20. Prove that $\chi(K_n) = n$.

 $(8 \ge 2 = 16 \text{ marks})$

SECTION C: Answer any 6 questions. Each carries 4 marks

- 21. Prove that in any graph G there is an even number of odd vertices.
- 22. Are the following graphs isomorphic? Justify.

- 23. Let G be a simple graph. Show that if G is not connected then its complement \overline{G} is connected.
- 24. Let T be a tree and let u and v be two non-adjacent vertices of T. Let G be the supergraph of T obtained from T by joining u and v by an edge. Prove that G contains a cycle.
- 25. Prove that a vertex v of a connected graph G is a cut vertex if and only if there are two vertices u and w in G such that v is on every u w path in G.

(P T O)

26. Define closure of a graph. Find the closure of the following graph by sketching the process.

- 27. Explain the Personnel assignment problem
- 28. Redraw the following graph to show that the graph is planar.

 $(6 \ge 4 = 24 \text{ marks})$

SECTION D: Answer any 2 questions. Each carries 15 marks

- 29. Let G be a simple graph with at least three vertices. Prove that G is 2- connected if and only if for each pair of distinct vertices u and v of G there are two internally disjoint u v paths in G.
- 30. Prove that a connected graph G has an Euler trail if and only if it has at most two odd vertices.
- 31. State Euler's formula for connected plane graphs and prove it using induction on the number of faces.

 $(2 \ge 15 = 30 \text{ marks})$