(PAGES 3)

Name:

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2025 HONOURS IN MATHEMATICS GMAH6B24T: ALGEBRA II

Time: 3 Hours

Maximum: 80 Marks

Part A: Answer all the following questions. Each carries one mark.

Choose the Correct Answer.

1.	1. Which of the following is not a field?			
	(a) C	(b) R	(c) Q	(d) Z
2.	Which of the following is an integral domain?			
	(a) \mathbb{Z}_{21}			(c) Z ₂₅
	(b) Z ₂₃			(d) All of the above
3.	2. Let F be the field of quotients. The additive identity of F is;			
	(a) [(0,0)]			(c) [(1,0)]
	(b) [(0,1)]			(d) [(1,1)]
4.	An additive subgroup N of a ring R is an ideal of R if for all $a, b \in R$			
	(a) $aN \subseteq N, k$	$oN \subseteq N$		(c) $aN \subseteq R, Nb \subseteq R$
	(b) $aN \subseteq R, b$	$N \subseteq N$		(d) $aN \subseteq N, Nb \subseteq N$
5.	Which of the following is an ideal of \mathbb{Z}_{12} ?			
	(a) {2,4,6,8,1	0}		(c) {0,5,10}

(b) {0,3,6,9} (d) None of the above

Fill in the Blanks.

- 6. The sum of number of zero divisors and number of units of \mathbb{Z}_5 is _____.
- 7. _____ is a prime field.
- 8. In \mathbb{Z}_7 , the evaluation homomorphism $\phi_3((x^4 + 2x)(x^3 3))$ is_____.
- 9. If R is a ring with unity and characteristic 0, then prove that R contains a subring isomorphic to ______.
- 10. The number of units \mathbb{Z} is _____.

(10 X 1 = 10 marks) (PTO)

Part B: Answer any eight questions. Each carries two marks.

- 11. What is the smallest field containing the integral domain \mathbb{Z} ?
- 12. Let *F* be the field of quotients. For [(a, b)] and [(c, d)] in *F*, show that the operation [(a, b)] + [(c, d)] = [(ad + bc, bd)] is commutative.
- 13. Solve the equation 3x = 2 in the field \mathbb{Z}_7 and in the field \mathbb{Z}_{23} .
- 14. Define integral domain and give an example of a finite integral domain.
- 15. Define ring.
- 16. Give an example of a polynomial in $\mathbb{R}[x]$ that is irreducible in \mathbb{R} .
- 17. State Factor theorem.
- 18. State true or false' "A ring homomorphism is one to one if and only if the kernel is {0}". Justify.
- 19. Compute the product (12)(16) in \mathbb{Z}_{24} .
- 20. Prove that a ring homomorphism $\phi: R \to R'$ if ker $\phi = \{0\}$.

(8 x 2 = 16 marks)

Part C: Answer any six questions. Each carries four marks.

- 21. Find all solutions of the congruence $22x \equiv 5 \pmod{15}$.
- 22. Let *F* be the field of quotients. Then prove that [(-a, b)] is an additive inverse for [(a, b)] in F.
- 23. Define characteristic of a ring and give an example for rings with finite characteristic and characteristic zero.
- 24. Find all $c \in \mathbb{Z}_3$ such that $\frac{\mathbb{Z}_3[x]}{\langle x^2 + c \rangle}$ is a field.
- 25. Let R be any ring and let $M_n(R)$ be the collection of all $n \times n$ matrices having entries from R. Show that $M_n(R)$ is a ring.
- 26. In Evaluation Homomorphism theorem if $F = E = \mathbb{C}$, compute the evaluation homomorphism $\phi_2(x^2 + 3)$.
- 27. Prove Factor theorem.
- 28. Solve the equation $x^2 5x + 6 = 0$ in \mathbb{Z}_{12} .

(6 x 4 = 24 marks)

Part D: Answer any two questions. Each carries fifteen marks.

- 29. Let F be the field of quotients. Then prove the following;
 - (a) Addition in F is commutative.
 - (b) [(0, 1)] is an identity element for addition in F.
 - (c) [(-a, b)] is an additive inverse for [(a, b)] in F.
 - (d) [(1, 1)] is a multiplicative identity element in F.
- 30. Show that the set R[x] of all polynomials in an indeterminate x with coefficients in a ring *R* is a ring under polynomial addition and multiplication. Also, prove that if R is commutative, then so is R[x].
- 31. (a) Let *R* be a commutative ring with unity. Then prove that *M* is a maximal ideal of *R* if and only if R/M is a field.
 - (b) Prove that a commutative ring with unity is a field if and only if it has no proper non trivial ideals.

(2 x 15 = 30 marks)