(PAGES: 2)

Reg. No.....

Name:

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2025 (Regular/Improvement/Supplementary) ECONOMICS & MATHEMATICS (DOUBLE MAIN) GDMT6B09T: NUMERICAL ANALYSIS

Time: 2 ¹/₂ Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 25 marks)

- 1. State Weierstrass approximation theorem.
- 2. For the given function $f(x) = \ln(x + 1)$, let $x_0 = 0$, $x_1 = 0.4$, and $x_2 = 0.8$. Construct interpolation polynomials of degree at most 2 to approximate f(0.55).
- 3. Write central difference formula.
- 4. Write Three Point Mid-Point formula.
- 5. Define Degree of Accuracy of a quadrature formula.
- 6. Let $f(x) = x^2 6$ and $p_0 = 1$. Use Newton's method to find p_2 .
- 7. Write the formula for finding root of f(x) = 0 using secant method.
- 8. Describe any two open Newton cotes formulas.
- 9. Define a convex set. Give an example of a set that is not convex
- 10. Define an initial value problem. When we say that an initial value problem is well-posed?
- 11. What is the maximum error while approximating a zero of f(x) on [a, b] using Bisection method in the third step?
- 12. Show that $f(x) = x^3 + 4x^2 10 = 0$ has a root in [1,2].
- 13. Compare the Trapezoidal rule and Simpson's rule approximations to $\int_0^2 f(x) dx$ when $(x) = x^2$.
- 14. Write n^{th} Lagrange interpolating polynomial.
- 15. Use Euler's method to approximate the solution of the initial-value problem.
 - $y' = te^{3t} 2y, \ 0 \le t \le 1, \ y(0) = 0 \text{ with } h = 0.5.$

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 35 marks)

- 16. Find an approximate root of the equation $x^2 3x + 2 = 0$ for $0 \le x \le 3$ using method of false position.
- 17. Show that each of the following initial-value problem $y' = e^{t-y}$, $0 \le t \le 1$, y(0) = 1 has a unique solution and find the solution.

18. Use Euler's method to approximate the solution of

 $y' = 1 + \frac{y}{t}, \quad 1 \le t \le 2, \quad y(1) = 2, \quad with \ h = 0.25.$

- 19. Let $x_0 = 0$, $x_1 = 0.6$, and $x_2 = 0.9$. Construct interpolation polynomial of maximum degree for f(x) = cosx and hence find absolute error for f(0.7).
- 20. Calculate the maximum error in the interval [0,3], when the polynomial is used to approximate $f(x) = x^3 + x$ Given $x_0 = 2$, $x_1 = 2$, and $x_2 = 3$.
- 21. Use second derivative formula to approximate f''(-0.1), where $f(x) = e^{2x} \cos 2x$ with h = 0.1
- 22. Use the Bisection method to find solutions accurate to within 10^{-2} for:

 $x^{3} - 7x^{2} + 14x - 6 = 0$ on each interval.

a) [1,3.2] b) [3.2,4]

23. Use the most accurate three-point formula to determine each missing entry in the following tables.

x	f(x)	f'(x)
2.0	3.6887983	
2.1	3.6905701	
2.2	3.6688192	
2.3	3.6245909	

SECTION C: Answer any two questions. Each carries ten marks.

24. The Newton forward-difference formula is used to approximate f(0.3) given the following data.

x	0.0	0.2	0.4	0.6
f(x)	15.0	21.0	30.0	51.0

Suppose it is discovered that f(0.4) was understated by 10 and f(0.6) was overstated

by 5. By what amount should the approximation to f(0.3) be changed?

25. Given the function f at the following values,

x	1.8	2.0	2.2	2.4	2.6
f(x)	3.12014	4.42569	6.04241	8.03014	10.46675

approximate $\int_{1.8}^{2.6} f(x) dx$ using any four suitable quadrature formulas.

26. Use fixed point iteration to find unique root of $x^3 + 4x^2 - 10 = 0$.

27. Find y(1) using Runge Kutta fourth order method, given y' = t + y, y(0) = 0, h = 0.25.

(2 x 10 = 20 Marks)