81

(PAGES 2)

Reg.	No

SIXTH SEMESTER B. Sc. DEGREE EXAMINATION, APRIL 2024 (Supplementary - 2018 Admission)

B.Sc. PHYSICS

APHY6E03T: MATERIALS SCIENCE

Time: 3 Hours.

Maximum Marks: 80

SECTION A: Short Answer Questions: Answer all questions. Each carries one mark.

- 1. What are smart materials? What are their components.
- 2. Differentiate between primary and secondary bonding.
- 3. Explain polymorphism using an example.
- 4. What do you mean by an abrasive ceramic?
- 5. What is meant by self-interstitials?
- 6. Why Aluminium is used as interconnect in IC instead of copper.
- 7. What are fullerenes?
- 8. How to estimate the grain size?

 $(8 \times 1 = 8 \text{ Marks})$

SECTION B: Paragraph Questions: Answer any six questions. Each carries four marks.

- 9. Discuss the formation of van der waal bonding in solids.
- 10. Write a short note on the different types of refractory ceramics.
- 11. Using a schematic diagram explain an X-ray diffractometer.
- 12. Distinguish between thermosetting and thermoplastic polymers.
- 13. What are composites? Explain its properties.
- 14. Distinguish between vacancy diffusion and interstitial diffusion.
- 15. Explain viscoelastic deformation of polymers.
- 16. What is stress-strain behaviour of ceramics?
- 17. Write a short note on Scanning Electron Microscopy.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION C: Problems: Answer any eight questions. Each carries four marks.

- 18. Obtain packing fraction in BCC structure.
- 19. Find the interplanar spacing for the lattice planes of Miller indices (111) and (220) for a cubic lattice with a=5.62 Å. What is the corresponding first order Bragg angle for these planes if diffraction is carried with Cu Kα radiation of wavelength 1.54 Å?

(PTO)

- 20. With schematic diagram, explain the working of Scanning Probe Microscopy.
- 21. Find the equilibrium concentration of vacancies in aluminium at 0 K and 300 K.

 The energy for vacancy formation is 0.70 eV/atom.
- 22. Explain in detail factors that influence diffusion and derive an expression for diffusion coefficient.
- 23. Calculate the radius of palladium atom, given that Pd has an FCC crystal structure, a density of 12.0 g/cm³ and the atomic weight of 106.4 g/mol.
- 24. Explain different allotropes of carbon structure with examples.
- 25. Explain (a) single crystalline material (b) polycrystalline materials (c) amorphous solids.
- 26. Briefly explain classification of materials.
- 27. Distinguish between edge and screw dislocation.
- 28. Explain how to estimate molecular weight of the polymer (number averaged molecular weight $(\overline{M_n})$ and weight averaged molecular weight $(\overline{M_n})$.
- 29. Describe rotating crystal method for X-ray diffraction.

 $(8 \times 4 = 32 \text{ Marks})$

SECTION D: Long Answer Questions: Answer any two questions. Each carries eight marks.

- 30. Describe the nature and origin of various forces existing between the atoms of a crystal.
 Explain the formation of a stable bond using the potential energy versus interatomic distance curve and force curve.
- 31. Explain various types of point defects in crystal? Briefly explain each.
- 32. How are ceramic materials classified? Explain each with their properties and applications.
- 33. Using suitable schematics, explain Transmission Electron Microscope. Mention any two limitations of TEM.

 $(2 \times 8 = 16 \text{ Marks})$