D6B1	MT180)4 (S3)
------	-------	---------

(PAGES 2)

Reg.No:.	••		• • •	••		•	•••	٠.	•
----------	----	--	-------	----	--	---	-----	----	---

Name:.....

SIXTH SEMESTER B. Sc. DEGREE EXAMINATION, APRIL 2024

(Supplementary - 2018 Admission)

MATHEMATICS

AMAT6B12T: NUMBER THEORY AND LINEAR ALGEBRA

Time: 3 Hours Maximum Marks: 120

PART A: Answer all the questions. Each carries one mark.

- 1. State the division algorithm for integers.
- 2. For any choice of positive integers a and b, lcm (a,b)=ab if and only if gcd (a,b)=.....
- 3. Give an example to show that $a^2 \equiv b^2 \pmod{n}$ need not imply that $a \equiv b \pmod{n}$
- 4. The decimal number corresponding to the number (1101001)₂ is
- 5. Give an example of a pseudo prime.
- 6. Define arithmetic function.
- 7. The value of $\begin{bmatrix} 1/3 \end{bmatrix}$ is.....
- 8. $\sum_{d/n} \varphi(d) = \dots$
- 9. Describe all sub spaces of the vector space R^2 over R.
- 10. Give an example of a linearly independent subset of the vector space R^3 over R.
- 11. Write the null space and the range of the zero transformation from a vector space V into a vector space W.
- 12. Define vector space isomorphism.

 $(12 \times 1 = 12 \text{ Marks})$

PART B: Answer any ten questions. Each carries four marks.

- 13. Prove that the square of any integer leaves a remainder 0 or 1 upon division by 4.
- 14. If gcd(a, b) = d, then prove that $gcd(\frac{a}{d}, \frac{b}{d}) = 1$.
- 15. Is the Diophantine equation 14x + 35y = 93 solvable.
- 16. Prove that if $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$.
- 17. Solve the congruence $18x \equiv 30 \pmod{42}$.
- 18. If gcd (a,35)=1, show that $a^{12} \equiv 1 \pmod{35}$.
- 19. If $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ is the prime factorization of n > 1, then show that $\tau(n) = (k_1 + 1)(k_2 + 1) \dots (k_r + 1).$
- 20. Calculate the value of $\sigma(20)$.

(PTO)

- 21. Prove that [x + n] = [x] + n for any integer n.
- 22. For n > 1, prove that the sum of the positive integers less than and relatively prime to n is $\frac{1}{2} n \varphi(n)$.
- 23. Show that the set of all 3 ×3 matrices with real entries is a real vector space under the usual operation of addition of matrices and multiplication by scalars.
- 24. Check whether $\{-2+x, 3+x, 1+x^2\}$ is a linearly independent subset of $R_2[x]$.
- 25. Prove that if a non-empty subset S of a vector space V is a basis for V, then every member of V can be expressed as a linear combination of elements of S in a unique way.
- 26. Check whether f(x, y, z) = (x 1, x, y) is a linear transformation from $R^3 \to R^3$.

 $(10 \times 4 = 40 \text{ Marks})$

PART C: Answer any six questions. Each question carries seven marks.

- 27. Using Euclidean algorithm find integers x and y satisfying the condition gcd(56,72) = 56x+72y.
- 28. Prove that there are infinitely many primes.
- 29. Solve the system of congruence $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$ and $x \equiv 3 \pmod{7}$.
- 30. If p is a prime ,then prove that $(p-1)! \equiv -1 \pmod{p}$.
- 31. Prove that τ and σ are both multiplicative functions.
- 32. Prove that the intersection of any two sub spaces of a vector space V is again a subspace of V.
- 33. Prove that every linearly independent subset I of a finite dimensional vector space V can be extended to a basis.
- 34. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by f(x, y, z) = (x + y, 0, y z). Determine image (f) and kernel (f).
- 35. Prove that every vector space V of dimension $n \ge 1$ over a field F is isomorphic to F^n .

 $(6 \times 7 = 42 \text{ Marks})$

PART D: Answer any two questions. Each carries thirteen marks.

- 36. State and prove the Fundamental Theorem of Arithmetic.
- 37. a) If n ≥ 1 and gcd(a, n) = 1, then prove that a^{φ(n)} ≡ 1 (mod n).
 b) If p is a prime and p does not divide a then show that a^{p-1} ≡ 1(mod p).
- 38. State and prove the Dimension Theorem.

 $(2 \times 13 = 26 \text{ Marks})$