D6BMT1802 (S3)

(PAGES 2)

Reg.	No

SIXTH SEMESTER B. Sc. DEGREE EXAMINATION, APRIL 2024

(Supplementary - 2018 Admission)

MATHEMATICS

AMAT6B10T: COMPLEX ANALYSIS

Time: 3 Hours.

Maximum Marks: 120

PART A: Answer all the questions. Each carries one mark.

- 1. Write the function $f(z) = z^2 + 1$ in the form f(z) = u(x, y) + iv(x, y).
- 2. When a function f of the complex variable z is analytic at a point z_0 ?
- 3. If e^z is real, then Imz, the imaginary part of z, is....
- 4. Evaluate $\int_0^{\frac{\pi}{6}} e^{i2t} dt$.
- 5. Define a simply connected domain.
- 6. State Cauchy integral formula.
- 7. When an infinite sequence of complex numbers $z_1, z_2, z_3, ..., z_n, ...$ has a limit z?
- 8. State True or False: "Any function which is analytic at a point z_0 must have a Taylor series about z_0 ."
- 9. Define the radius of convergence of a power series.
- 10. The number of isolated singular points of the function $f(z) = \frac{z+1}{z^3(z^2+1)}$ is.....
- 11. Find the residue at z = 0 of the function $f(z) = \frac{z \sin z}{z}$.
- 12. Let function f be analytic at a point z_0 . When f is said to have a zero of order m at z_0 ?

 $(12 \times 1 = 12 \text{ Marks})$

PART B: Answer any ten questions. Each carries four marks.

- 13. Verify Cauchy-Riemann equations for the function $f(z) = z^2$.
- 14. Show that $u(x, y) = \sinh x \sin y$ is harmonic.
- 15. Show that $\exp(2 \pm 3\pi i) = -e^2$.
- 16. Show that if $\operatorname{Re} z_1 > 0$ and $\operatorname{Re} z_2 > 0$, then $\operatorname{Log}(z_1 z_2) = \operatorname{Log} z_1 + \operatorname{Log} z_2$.
- 17. Evaluate $\int_C f(z)dz$ where $f(z) = \frac{z+2}{z}$ and C is the circle $z = 2e^{i\theta}$, $0 \le \theta \le 2\pi$.
- 18. Using Cauchy-Goursat theorem, show that $\int_C \frac{1}{z^2+2z+2} dz = 0$ when the contour C is the circle |z| = 1, in either direction.
- 19. Find the value of the integral of $f(z) = \frac{1}{z^2+4}$ around the circle |z-i| = 2 in the positive sense
- 20. Obtain the Maclaurin series representation $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$, |z| < 1.
- 21. State Laurent's theorem.
- 22. Find a representation of the function $f(z) = \frac{1}{1+z}$ in negative powers of z that is valid when $1 < |z| < \infty$.
- 23. Evaluate the integral of the function $f(z) = \frac{z+1}{z^2-2z}$ around the circle |z| = 3 in the positive sense.

(PTO)

- 24. Show that the function $f(z) = \frac{\sinh z}{z^4}$ has a pole of order 3 at $z_0 = 0$.
- 25. Show that residue of $f(z) = \frac{z \sinh z}{z^2 \sinh z}$ at $z = \pi i$ is $\frac{i}{\pi}$.
- 26. If z_0 is a removable singular point of a function f, then show that f is analytic and bounded in some deleted neighborhood $0 < |z z_0| < \varepsilon$ of z_0 .

 $(10 \times 4 = 40 \text{ Marks})$

PART C: Answer any six questions. Each carries seven marks.

- 27. If a function f(z) is continuous and nonzero at a point z_0 , then prove that $f(z) \neq 0$ throughout some neighborhood of that point.
- 28. If a function f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then prove that its component functions u and v are harmonic in D.
- 29. Show that $tan^{-1}z = \frac{i}{2}log \frac{i+z}{i-z}$.
- 30. If a function f is analytic at a point, then prove that its derivatives of all orders exist at that point. Also prove that those derivatives are, moreover, all analytic there.
- 31. State and prove Cauchy's inequality.
- 32. Represent the function $f(z) = \frac{z+1}{z-1}$ by its Laurent series in the domain $1 < |z| < \infty$.
- 33. If a series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges to f(z) at all points interior to some circle $|z-z_0| = R$, then prove that it is the Taylor series expansion for f in powers of $z-z_0$.
- 34. Describe the three types of isolated singular points.
- 35. Find the value of the integral $\int_C \frac{dz}{z^3(z+4)}$ taken counterclockwise around the circle |z| = 2.

 $(6 \times 7 = 42 \text{ Marks})$

PART D: Answer any two questions. Each carries thirteen marks.

- 36. (a) Derive Cauchy-Riemann equations in polar coordinates.
 - (b) When α is a fixed real number, show that the function $f(z) = \sqrt[3]{r}e^{-\frac{i\theta}{3}}$, r > 0, $\alpha < \theta < \alpha + 2\pi$, has a derivative everywhere in its domain of definition. Also find f'(z).
- 37. State and prove Taylor's theorem.
- 38. (a) Evaluate the improper integral $\int_0^\infty \frac{dx}{x^4+1}$
 - (b) Show that $\int_0^{2\pi} \frac{d\theta}{1 + a \sin \theta} = \frac{2\pi}{\sqrt{1 a^2}}$, -1 < a < 1.

 $(2 \times 13 = 26 \text{ Marks})$