D	n In	TTA	102
וסע	Dr.	ПL	103

J2 Reg.No...... Name:

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024 (Regular/Improvement/Supplementary)

PHYSICS GPHY6B12T: NUCLEAR PHYSICS AND PARTICLE PHYSICS

Time: 2 Hours Maximum Marks: 60

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 20 Marks)

- 1. Define Binding Energy of nucleus.
- 2. What are magic numbers?
- 3. Explain alpha decay with an example.
- 4. What are the conditions under which nuclear fusion occurs?
- 5. What is nuclear reaction? Give an example.
- 6. Give two medical applications of nuclear reactions.
- 7. What are transuranic elements?
- 8. What is nuclear radiation detector?
- 9. Explain the principle of working of linear accelerator.
- 10. Name the four basic forces in nature.
- 11. What are fermions and bosons?
- 12. Give the quark composition of protons and neutrons.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 30 Marks)

- 13. Find the total binding energy and binding energy per nucleon for $^{133}\text{Cs}_{55}$. Given $m_n = 1.008665$ u, $m(^1\text{H}_1) = 1.007825$ u, m(Cs) = 132.905452 u.
- 14. Derive an expression for reaction cross-section.
- 15. Explain the essential parts of nuclear reactors.
- 16. Briefly explain Geiger-Muller counter.
- 17. Explain surface barrier detector.
- 18. A cyclotron with dees of diameter 1.8 m has a magnetic field of 0.8T. Calculate the energy of an accelerated proton.
- 19. Calculate radius needed in proton synchrotron to attain particle energies of 10 GeV. Assume the magnetic field available is 1.5 T.

SECTION C: Answer any one question. Each carries ten marks.

- 20. Explain postulates of liquid drop model. Derive Weizsacker semi empirical mass formula.
- 21. Derive an expression for relativistic threshold kinetic energy of particle reactions of elementary particles.