D6BPH2102	()		Reg.No
			Name:

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024 (Regular/Improvement/Supplementary)

PHYSICS

GPHY6B11T: STATISTICAL PHYSICS, SOLID STATE PHYSICS, SPECTROSCOPY & PHOTONICS

Time: 2 Hours Maximum Marks: 60

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 20 Marks)

- 1. What are the key differences between classical and quantum statistics?
- 2. Distinguish between a unit cell and a primitive cell.
- 3. Explain the concept of Bravais lattices.
- 4. Explain resolving power of a spectrometer.
- 5. What are hot bands?
- 6. What is the difference between spontaneous emission and stimulated emission?
- 7. What are the different radiations in electromagnetic spectrum?
- 8. What is Morse curve?
- 9. Give any two applications of lasers.
- 10. Mention any two applications of Bose-Einstein statistics.
- 11. Explain the concept of Crystal symmetry. What is its importance in solid state physics?
- 12. What are the basic elements of practical spectrometer?

SECTION B: Answer the following questions. Each carries five marks.

(Ceiling 30 Marks)

- 13. Explain the working of a He- Ne Laser with suitable diagrams.
- 14. Explain the spectrum of a rigid rotator.
- 15. Discuss Einstein's coefficients in the context of stimulated emission.
- 16. What will be the change observed in the spectrum of a molecule when the molecule is considered as a simple harmonic oscillator and anharmonic oscillator? Why?
- 17. What are the factors affecting intensities of spectra lines?
- 18. Obtain the Miller indices of a plane with intercepts at 3a, (b / 2) and c in a simple cubic unit cell. Draw the plane.
- 19. A container holds one mole of argon gas at a temperature of 300 K. Calculate the fraction of the molecules in the container with energies between 0.025 eV and 0.026 eV.

SECTION C: Answer any one question. Each carries ten marks.

- 20. Derive and explain Bragg's law. Explain the working of a Bragg's X-ray spectrometer.
- 21. Compare Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics. Give examples of particles obeying each of the above.

 $(1 \times 10 = 10 \text{ Marks})$