

D6BMT2103

(PAGES 2)

Reg.No:	 	•••	••••	••••	•••	••
Namo						

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024 (Regular/Improvement/Supplementary) MATHEMATICS GMAT6B12T - LINEAR ALGEBRA

Time: 2.5 Hours Maximum Marks: 80

SECTION A: Answer the following questions. Each carries two marks. (Ceiling 25 Marks)

1. Reduce the following matrix in echelon form.

$$\left(\begin{array}{cccc} 1 & -2 & 3 & -1 \\ 2 & -1 & 2 & 2 \\ 3 & 1 & 2 & 3 \end{array}\right).$$

- 2. Give an example of a vector space of dimension 8.
- 3. Sate Cayley Hamilton Theorem.
- 4. Define the dimension of a vector space. Let V be the vector space of all polynomials of degree less than or equal 3 over the field \mathbb{R} . What is the dimension of V?
- 5. Construct a vector space with exactly 9 elements.
- 6. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by T(x, y, z) = (x, x). Find the range of T.
- 7. Show that the linear map $\mathbb{R}^2 \to \mathbb{R}^2$ given by T(x,y) = (x+y,x-y) is bijective.
- 8. Find the eigenvalues of the linear map $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by T(x,y) = (y,x).
- 9. Let V be the class of all polynomials of degree greater than 3 over a field F. Is it a vector space? Justify your answer.
- 10. What do you mean by matrix of a linear map? Explain with an example.
- 11. Can you extend the set $\{(1,1,1),(1,0,2)\}$ to a basis of \mathbb{R}^3 ? Give reason.
- 12. Let V and W be vector spaces over a field F. Suppose T is a linear map from V to W. Prove that T(0) = 0.
- 13. Let V be a vector space over a field F and, let $T \in \mathcal{L}(V)$. Let U be a subspace of V. When do you say that U is invariant under T? Is null space of T invariant under T?
- 14. Let V = C[0,1]. For $f, g \in V$, put

$$\langle f, g \rangle = \int_0^1 \overline{f(t)} g(t) dt.$$

Prove that \langle , \rangle is an inner product.

15. Define an inner product space. Give example of an inner product on \mathbb{R}^2 .

SECTION B: Answer the following questions. Each carries five marks. (Ceiling 35 Marks)

16. Solve the following system of homogeneous equations.

$$3x + 2y + 7z = 0$$

$$4x - 3y - 2z = 0$$

$$5x + 9y + 23z = 0$$

(PTO)

- 17. Let $A = \begin{bmatrix} 1 & 1 & 2 \\ 9 & 2 & 0 \\ 5 & 0 & 3 \end{bmatrix}$. Find inverse of A using Cayley-Hamilton theorem.
- 18. Suppose $T \in \mathcal{L}(\mathbf{F}^2)$ is defined by $T(\mathbf{w}, \mathbf{z}) = (-\mathbf{z}, \mathbf{w})$
 - (a) Find the eigenvalues and eigenvectors of T if F = R.
 - (b) Find the eigenvalues and eigenvectors of T if $\mathbf{F} = \mathbf{C}$.
- 19. Show that the function that takes $((x_1, x_2), (y_1, y_2)) \in \mathbf{R}^2 \times \mathbf{R}^2$ to $|x_1y_1| + |x_2y_2|$ is not an inner product on \mathbf{R}^2 .
- 20. Suppose $T \in \mathcal{L}(V, W)$ is injective and v_1, \ldots, v_n is linearly independent in V. Prove that Tv_1, \ldots, Tv_n is linearly independent in W.
- 21. Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T(x,y) = (\sin x, y)$$

Show that T is not a linear map.

- 22. Show that the subspaces of R are precisely {0} and R.
- 23. Let U be the subspace of \mathbb{C}^5 defined by $U = \{(z_1, z_2, z_3, z_4, z_5) \in \mathbb{C}^5 : 6z_1 = z_2 \text{ and } z_3 + 2z_4 + 3z_5 = 0\}$. Find a basis of U.

SECTION C: Answer any two questions. Each carries ten marks.

- 24. (a) Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Prove that v_1, \ldots, v_m is linearly independent.
 - (b) Prove that every finite-dimensional vector space has a basis
- 25. (a) Suppose V is finite-dimensional and U is a subspace of V. Then prove that there is a subspace W of V such that $U \oplus W = V$.
 - (b) Suppose v_1, v_2, v_3, v_4 is a basis of V. Prove that

$$v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$$

is also a basis of V.

- 26. (a) Prove that a invertible linear map has a unique inverse.
 - (b) Suppose U and W are subspaces of a vector space V. Then prove that U + W is a direct sum if and only if $U \cap W = \{0\}$.
- 27. (a) Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.
 - (b) Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and $\lambda \in F$. Then prove the following are equivalent:
 - (i) λ is an eigenvalue of T;
 - (ii) $T \lambda I$ is not injective;
 - (iii) $T \lambda I$ is not surjective;
 - (iv) $T \lambda I$ is not invertible.

 $(2 \times 10 = 20 \text{ Marks.})$