 7
1
l

D6BMT2102

(PAGES 2)

Reg.No.....

Name:

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024 (Regular/Improvement/Supplementary)

MATHEMATICS GMAT6B11T: COMPLEX ANALYSIS

Time: 2 ½ Hours Maximum Marks: 80

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 25 Marks)

- 1. Calculate the modulus and principal argument of 1 i.
- 2. Show that, for every pair c, d of non-zero complex numbers

$$\arg\left(\frac{c}{d}\right) \equiv \arg c - \arg d \pmod{2\pi}.$$

- 3. Express $\frac{3+7i}{2+5i}$ in standard form.
- 4. State Liouville's theorem.
- 5. When do you say that a complex function is differentiable at a point c. Write down the Cauchy-Riemann equations.
- 6. Let $S \subset \mathbb{C}$. Define closure, interior and boundary of the set S.
- 7. State Heine-Borel theorem.
- 8. Give the formula for finding the length of a curve $C = \{r(t): t \in [a, b]\}$.
- 9. Define $\dot{y}(t)$.
- 10. Evaluate $\int_{\gamma} 1/z^2 dz$ where $\gamma: (x-2)^2 + \frac{1}{4} (y-5)^2 = 1$.
- 11. Evaluate $\int_{\gamma} f(z) dz$ where $f(z) = \frac{\sin z}{(z^2-25)(z^2+9)}$ and $\gamma: |z| = 1$.
- 12. State Morera's theorem.
- 13. Sketch the region defined by $|\leq|z|\leq|2,0\leq argz\leq\pi$
- 14. Define the term residue.
- 15. State the Casorati-Weierstrass Theorem.

SECTION B: Answer the following questions. Each carries five marks.

(Ceiling 35 Marks)

- 16. Show that \mathbb{C} and ϕ are the only two subsets of \mathbb{C} that are both open and closed.
- 17. Let S be a closed bounded set, and let f, with domain containing S, be continuous and nonzero throughout S. Prove that $\inf\{|f(z)|: x \in S\} > 0$.
- 18. Let $f(z) = \frac{z^3 4z + 1}{(z^2 + 5)(z^3 3)}$ and $\gamma(t) = Re^{it}$, $0 \le t \le \pi$. Show that $\left| \int_{\gamma} f(z) \, dz \right| \le \frac{\pi R(R^3 + 4R + 1)}{(R^2 + 5)(R^3 3)}.$

- 19. Let $\gamma_1, \gamma_2 : [a, b] \to \mathbb{C}$ be piecewise smooth curves such that $\gamma_1(a) = \gamma_2(a)$, $\gamma_1(b) = \gamma_2(b)$, $\gamma_1(t_1) \neq \gamma_2(t_2)$ $(t_1, t_2 \in (a, b))$. If f is holomorphic throughout an open set containing γ_1^*, γ_2^* and the region between, prove that $\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$.
- 20. Find the Maclaurin series expansion of log(1 + z).
- 21. Show that the coefficient of z^{-1} in the Laurent series of $e^{\frac{1}{z}}e^{2z}$ is $\sum_{n=0}^{\infty}\frac{2^n}{n!(n+1)!}$
- 22. Determine $\int_{\gamma} 1/(z^2+1)^2 dz$, where γ is the semicircle $[-R, R] U\{z: |z| = R, Imz > 0\}$, traversed in the positive direction, with R > 1.
- 23. Evaluate $\int_{\kappa(0,2)} \frac{\sin \pi z}{(2z+1)^3} dz.$

SECTION C: Answer any two questions. Each carries ten marks.

- 24. Show that a power series $\sum_{n=0}^{\infty} c_n (z-a)^n$ satisfies exactly one of the following three conditions:
 - (i) the series converges for all z;
 - (ii) the series converges only for z = a;
 - (iii) there exists a positive real number R such that the series converges for all z such that |z a| < R and diverges for all z such that |z a| > R.
- 25. Let $\gamma: [a, b] \to \mathbb{C}$ be piecewise smooth. Let F be a complex function defined on an open set containing γ^* , and suppose that F'(z) exists and is continuous at each point of γ^* . Prove that $\int_{\gamma} F'(z) dz = F(\gamma(b)) F(\gamma(a))$.
- 26. Let γ be a contour, let f be holomorphic in a domain containing $I(\gamma) \cup \gamma^*$, and let $a \in I(\gamma)$. Prove that $f'(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^2} dz$.
- 27. Evaluate $\int_0^{\pi} \frac{1}{a^2 + \cos^2 \theta} d\theta$, a > 1.

 $(2 \times 10 = 20 \text{ Marks})$