

D6BEM2103

(PAGES 2)

Name:

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024

(Regular/Improvement/Supplementary)

ECONOMICS & MATHEMATICS (DOUBLE MAIN)

GDMT6B09T: NUMERICAL ANALYSIS

Time: 2 1/2 Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 25 Marks)

- 1. Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4) and (5, 1).
- 2. Write the Three point endpoint formula.
- 3. State the Traezoidal rule.
- 4. Define a convex set in \mathbb{R}^2 .
- 5. Determine any fixed points of the function $f(x) = x^2 2$.
- 6. Write Runge-Kutta method of order 4.
- 7. Approximate $\int_0^2 x^2 dx$ using Simpson's rule.
- 8. Give Newton backward-difference formula.
- 9. Write Taylor method of order n.
- 10. Show that $f(x) = x^3 + 4x^2 10$ has a root in [1,2].
- 11. Write Newton Raphson method of approximation.
- 12. Write modified Euler's method.
- 13. State Simpson's Three Eight rule.
- 14. Write Stirling formula.
- 15. Write Legendre Polynomial $P_0(x)$, $P_1(x)$.

SECTION B: Answer the following questions. Each carries five marks.

(Ceiling 35 Marks)

- 16. Consider the function $f(x) = \cos x x = 0$. Approximate a root of f using Newton Raphson method.
- 17. Use Lagrange interpolating polynomial of degree 3 to approximate f(9.2)=2.19722, f(9.5)=2.25129, f(10)=2.30259, f(11)=2.39790.
- 18. Approximate the integral $\int_1^{10} \frac{1}{x} dx$ using closed Newton-cotes formula.

18. Using Newton forward difference formula, find an approximation to f(2) for the data.

x	1	3	5	7
f(x)	24	120	336	720

- 20. Let $f(x) = x^2 6$ with $P_0 = 3$ and $P_1 = 2$, find P_3 using method of False position
- 21. Consider the function $f(x) = x\sin x + x^2 \cos x$. Use Three point mid point formula at h=0.1 to approximate f'(1.2).
- 22. Use Euler's method to approximate the solution to $y' = y t^2 + 1$, $0 \le t \le 2$ y(0) = 0.5 at t = 2.
- 23. Approximate $\int_0^1 e^{-x^2} dx$ by means of Midpoint formula, Simpson's rule.

SECTION C: Answer any two questions. Each carries ten marks.

- 24. Solve $x^3 9x + 1 = 0$ for the root between 2 and 4 by bisection method.
- 25. Compare the results of the closed and open Newton cotes formula when approximating $\int_0^{\frac{\pi}{4}} \sin x \, dx = 1 2\sqrt{2} \cong 0.29289322.$
- 26. Use Runge-Kutta method of order four with h=0.25 to obtain approximation to the solution of the initial value problem $y' = t^2 + y^2$, y(0) = 0 at t=0.2.
- 27. Find $log_{10}301$ from the following data.

x	300	301	304	305	307
$y = log_{10}x$	2.4771	******	2.4829	2.4843	2.4871

 $(2 \times 10 = 20 \text{ Marks})$