17

| Reg.No. | ••••••• |
|---------|---------|
|---------|---------|

## SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024

(Regular/Improvement/Supplementary)

## CHEMISTRY GCHE6B10T: ORGANIC CHEMISTRY III

Time: 2 Hours

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 20 Marks)

1. Calculate the  $\lambda$ max for the given structure.

- 2. What are chromophores? Give two examples.
- 3. Write the chemistry behind Benedict's test.
- 4. Differentiate between epimers and anomers.
- 5. What is meant by Zwitter ion? How does isoelectric point influence the properties of an amino acid?
- 6. Write a short note on Strecker synthesis.
- 7. Define saponification value.
- 8. How steroids are classified? Give examples for each.
- 9. How are essential oils extracted from plant sources?
- 10. Comment on the physiological activity of coniine. Draw its structure.
- 11. Sketch the MO diagram of buta-1,3-diene and indicate the HOMO and LUMO.
- 12. Which rotatory pathways will be symmetry-allowed for ring closure under thermal and photochemical conditions for an acyclic polyene with an even number of conjugated bonds?

## SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 30 Marks)

- 13. How can you distinguish between benzaldehyde and acetophenone using IR spectroscopy?
- 14. How does shielding of protons affect the positions of their signals in the NMR spectra?
- 15. Explain the classification of carbohydrate with suitable examples.
- 16. How is glucose converted to fructose? Explain with equations.
- 17. Explain the double helical structure of DNA.
- 18. How Vitamins are classified? Draw the structure of Vitamin C.
- 19. Discuss the structural elucidation of Citral.

## SECTION C: Answer any one question. Each carries ten marks.

- 20. Discuss on primary, secondary, tertiary and quaternary structure of proteins.
- 21. (a) Explain Woodward Hoffmann rules for electrocyclic reactions.
  - (b) Discuss the electrocyclic reaction of hexa-1,3,5-triene under thermal and photochemical conditions. Explain on the basis of frontier molecular orbital theory.