D6BPH1703 (S3)

Time: 3 Hours

(PAGES 2)

Reg.	No	 •••••
1409.	T 1 0	

Name:

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(Supplementary - 2017 & 2018 Admissions)

PHYSICS

APHY6B12T: NUCLEAR PHYSICS, PARTICLE PHYSICS & ASTROPHYSICS

will be findful assumed a character of the control of

Maximum Marks: 80

- 1. Write down the expression for Q value of beta decay process.
- 2. What do you understand by magnitude of stars?

SECTION A: Answer all questions. Each carries 1 mark.

- 3. Define critical mass of chain reaction.
- 4. State the law of radioactive disintegration.
- 5. What is an equatorial system?
- 6. Mention two applications of colour index.
- 7. What are leptons? Name them
- 8. What is meant by the term distance modulus?

 $(8 \times 1 = 8 \text{ Marks})$

SECTION B: Answer any six questions. Each carries 4 marks.

- 9. Write a note on shell model.
- 10. Distinguish between electrostatic accelerators and cyclic accelerators.
- 11. Explain the principle of linear accelerator.
- 12. Give a brief idea about semiconductor detectors.
- 13. What are the uses of nuclear reactor? Mention about breeder reactor.
- 14. Briefly explain an Ionization chamber.
- 15. Explain the geomagnetic effects of cosmic rays.
- 16. Give a note on fundamental interactions.
- 17. Explain how a Bubble chamber is used for particle detection.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION C: Answer any eight questions. Each carries 4 marks.

- 18. Find the absolute magnitude of SUN whose apparent magnitude m = -26.74 and $d = 4.854 \times 10^{-6}$ parsecs.
- 19. Consider two stars A and B. Star A at a distance half that of B appears twice as bright as B. Compare their luminosities.
- 20. Which one is a possible reaction?
 - a) $\pi^- + p \to \Lambda^0 + K^0$ b) $K_- + p \to \sum^+ + \pi^+$
- 21. A muon (μ-)collides with a proton, a neutron plus another particle is formed. What is the other particle
- 22. Write the quarks combination of proton, neutron, Σ^+ , Λ^0
- 23. The electric field in a cyclotron is reversed every 9.372 x 10⁻⁸s. It is used to accelerate deuterons, each of mass 3.34 x 10⁻²⁷kg and charge 1.6 x 10⁻¹⁹C. Calculate the flux density of the magnetic field.
- 24. It is required to operate a proportional counter with a maximum radial field of 6Vm⁻¹. What is the applied voltage required if the radii of the wire and tube are 0.01cm and 1cm respectively.
- 25. Calculate the mass in gram of a radioactive sample Pb²¹⁴ having an activity of one microcurie and a half-life of 26.8 minute.
- 26. Determine the amount of energy released in the D-T (deuterium-tritium) fusion reaction.
- 27. The radius of $_{29}$ Cu 64 is measured to be 4.8 x 10^{-13} cm. Find the radius of $_{12}$ Mg 27
- 28. Find the binding energy per nucleon value of $^{120}\mathrm{Sn}_{50}$. Given atomic mass of $\mathrm{Sn}^{120}=119.9099$ amu, mass of hydrogen atom =1.00783 amu, Mass of neutron =1.00865 amu.
- 29. Find the density of ₆C¹² nucleus.

 $(8 \times 4 = 32 \text{ Marks})$

SECTION D: Answer any two questions. Each carries 8 marks.

- 30. Explain the postulates of liquid drop model. Derive Weiz sacker semi empirical mass formula.
- 31. Describe the principle, construction and working of a betatron.
- 32. Classify the elementary particles in detail.
- 33. Discuss the tunnel theory of alpha decay.

 $(2 \times 8 = 16 \text{ Marks})$