D6BMT2003

(PAGES 3)

Reg. No.....

SIXTH SEMESTER B. Sc DEGREE EXAMINATION, APRIL 2023

(Regular/Improvement/Supplementary)

MATHEMATICS

GMAT6B12T - LINEAR ALGEBRA

Time: 2 1/2 Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries two marks.

(Ceiling 25 Marks)

1. Find the rank of the matrix
$$egin{array}{ccccc} 1 & 1+i & -i \\ 0 & i & 1+2i \\ 1 & 1+2i & 1+i \end{array}$$

- 2. Define homogeneous and non-homogeneous system of linear equations with examples.
- 3. Find the characteristic equation of $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$
- 4. Show that $\frac{-1+\sqrt{3}i}{2}$ is a cube root of 1.
- 5. Prove that every element in a vector space has a unique additive inverse.
- 6. Define infinite dimensional vector space and give two examples.
- 7. True or False: A spanning list in a vector space may not be a basis. Give reason.
- 8. Let $T \in \mathcal{L}(V, W)$ and let null $T = \{0\}$. Prove that T is injective.
- 9. Let $T \in \mathcal{L}(\mathcal{P}(R), \mathcal{P}(R))$ is the linear map defined by $(Tp)(x) = x^2p(x)$. Find the range of T.
- 10. Define innerproduct space on a vector space.
- 11. Give an example of a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that f(av) = af(v) for all $a \in \mathbb{R}$ and all $v \in \mathbb{R}^2$, but f is not linear.

(PTO)

- 12. Prove or give a counter example: if U is subspace of V that is invariant under every operator on V, then $U = \{0\}$ or U = V.
- 13. Define $T \in \mathcal{L}(F^2)$ by T(w, z) = (z, w). Find all eigenvalues and eigenvectors of T.
- 14. True or False: Multiplication of linear maps is not commutative. Give reason.
- 15. Prove that an innerproduct space satisfies the conjugate homogeneity in the second slot.

SECTION B: Answer the following questions. Each carries five marks. (Ceiling 35 Marks)

16. Reduce the matrix
$$A = \begin{bmatrix} 0 & 2 & 3 & 4 \\ 2 & 3 & 5 & 4 \\ 4 & 8 & 13 & 12 \end{bmatrix}$$
 to normal form.

17. Find all solutions of
$$\begin{cases} x_1+x_2+x_3+x_4=0\\ x_1+x_2+x_3-x_4=4\\ x_1+x_2-x_3+x_4=-4\\ x_1-x_2+x_3+x_4=2 \end{cases}$$

- 18. Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.
- 19. Prove that if $\{v_1, v_2, \dots, v_n\}$ spans V, then so does the list $\{v_1 v_2, v_2 v_3, \dots, v_{n-1} v_n, v_n\}$ obtained by subtracting from each vector (except the last one) the following vector.
- 20. Suppose $T \in \mathcal{L}(V, W)$ and (v_1, \ldots, v_n) is a basis of V and (w_1, \ldots, w_m) is a basis of W. Then prove that $\mathcal{M}(Tv) = \mathcal{M}(T)\mathcal{M}(v)$ for every $v \in V$.
- 21. Suppose V is finite dimensional. If $T \in \mathcal{L}(V)$, then prove that the following are equivalent:
 - (a) T is invertible
 - (b) T is injective
 - (c) T is surjective
- 22. Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding nonzero eigenvectors. Then show that (v_1, \ldots, v_m) is linearly independent.
- 23. Give an example of an operator whose matrix with respect to some basis contains only 0's on the diagonal, but the operator is invertible.

SECTION C: Answer any two questions. Each carries 10 marks.

24. (a) Find the characteristic roots and the associated invariant vectors of
$$A = \begin{bmatrix} 1 & -4 & -1 & -4 \\ 2 & 0 & 5 & -4 \\ -1 & 1 & -2 & 3 \\ -1 & 4 & -1 & 6 \end{bmatrix}$$

(b) State Cayley Hamilton Theorem. Use the theorem to compute A^{-1} for the matrix

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1 \end{bmatrix}$$

- 25. (a) Prove that the real vector space consisting of all continuous real valued functions on the interval [0, 1] is infinite dimensional.
 - (b) Let U be the subspace of \mathbb{R}^5 defined by $U=\{(x_1,x_2,x_3,x_4,x_5)\in\mathbb{R}^5: x_1=3x_2 ext{ and } x_3=7x_4\}$. Find a basis of U .
 - (c) Suppose that V is finite dimensional and U is a subspace of V such that dim $U = \dim V$. Prove that U = V
- 26. (a) Suppose that V is finite dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST is invertible if and only if both S and T are invertible.
 - (b) Suppose that V is finite dimensional and $T \in \mathcal{L}(V)$. Prove that T is a scalar multiple of the identity if and only if ST = TS for every $S \in \mathcal{L}(V)$.
- 27. (a) Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$. Prove that $V = \text{null } P \oplus$
 - (b) Let $M_{m \times n}(C)$ be the complex vector space of $m \times n$ complex matrices. Define $\langle A, B \rangle = \operatorname{tr}(B^*A)$. Prove that \langle , \rangle is an innerproduct.

 $(2 \times 10 = 20 \text{ Marks})$