Keg.No	
Name	

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(Regular/Improvement/Supplementary)

MATHEMATICS

GMAT6B10T: ADVANCED REAL ANALYSIS

Time: 2 1/2 Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 25 Marks)

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. Find f((-2,1)).
- 2. State Weierstrass Approximation Theorem.
- 3. If I := [0,4], calculate the norm of the partition P := (0,1,2,4).
- 4. Give an example of Riemann integrable function which is not monotonic.
- 5. Using fundamental theorem of calculus, find $\int_a^b \frac{1}{x^2+1} dx$.
- 6. Prove that $x^{m/n} = (x^m)^{1/n}$, $m \in \mathbb{Z}$, $n \in \mathbb{N}$ and x > 0.
- 7. Define uniform norm and explain the concept with an example.
- 8. Give an example of a sequence of continuous functions that converges nonuniformly to a continuous limit.
- 9. What is the relation between convergence and absolute convergence of series of functions?
- 10. Define Cauchy Principal Value.
- 11. State comparison test for improper integrals.
- 12. Express $\int_0^1 x^{17} (1-x)^{13} dx$ in terms of Gamma function.
- 13. Find $\lim (x/n)$, for $x \in \mathbb{R}$.
- 14. State Additivity theorem for Riemann integrable functions.
- 15. Prove or disprove that $g(x) := \sin(1/x)$, is uniformly continuous on $B := [0, \infty]$.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 35 Marks)

- 16. Let I be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I. Then prove that the set $f(I) := \{f(x): x \in I\}$ is a closed bounded interval.
- 17. Suppose that f is in $\mathcal{R}[a,b]$, and if $k \in \mathbb{R}$, then show that the function kf is in $\mathcal{R}[a,b]$ and $\int_a^b kf = k \int_a^b f$

- 18. If f is continuous on [a, b], then prove that the indefinite integral F, defined by F(z); = $\int_a^z f$ for $z \in [a, b]$, is differentiable on [a, b] and F'(x) = f(x) for all $x \in [a, b]$
- 19. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be increasing on I. Suppose that $c \in I$ is not an end point of I. Then prove that $\lim_{x \to c^-} f = \sup \{ f(x) : x \in I, x < c \}$.
- 20. Let $g_n(x) = x^n$ for $x \in [0,1]$. Find the pointwise limit of $g_n(x)$.
- 21. Show that a sequence (f_n) of functions on $A \subseteq \mathbb{R}$ to \square converges to a function $f: A_0 \to \mathbb{R}$ on A_0 if and only if for each $\varepsilon > 0$ and each $x \in A_0$ there is a natural number $K(\varepsilon, x)$ such that if $n \ge K(\varepsilon, x)$, then $|f_n(x) f(x)| < \varepsilon$.
- 22. Evaluate $\int_{1}^{\infty} \frac{1}{x^2} dx$.
- 23. Examine the convergence of $\int_0^\infty e^{-x^2} dx$.

SECTION C: Answer any 2 question. Each carries ten marks.

- 24. State and prove Uniform Continuity Theorem.
- 25. If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b], then prove that $f \in \mathcal{R}[a,b]$.
- 26. State and prove Cauchy criterion for the uniform convergence of series of functions.
- 27. Prove that $\int_0^\infty \frac{t^2 dt}{1+t^4} = \frac{\pi}{2\sqrt{2}}$

 $(2 \times 10 = 20 \text{ Marks})$