D6BMT1804 (S2)

(PAGES 2)

reg.I	U.	• • • •	•••	• • • • • •	*****

Name:....

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(Supplementary - 2018 Admission)

MATHEMATICS

AMAT6B12T: NUMBER THEORY AND LINEAR ALGEBRA

Time: Three Hours Maximum Marks: 120

PART A: Answer all the questions. Each carries 1 mark.

- 1. For any two positive integers a and b, $gcd(a, b) lcm(a, b) = \dots$
- 2. State the fundamental theorem of arithmetic.
- 3. Give an example of a triangular number.
- 4. The binary number corresponding to 123 is
- 5. State Wilson's Theorem.
- 6. $\tau(12) = \dots$
- 7. The equality [x] = x holds if and only if $x = \dots$
- 8. If f is a non-zero multiplicative function, then $f(1) = \dots$
- 9. What is the dimension of the vector space \mathbb{R}^3 over \mathbb{R} .
- 10. Define linearly independent subset of a vector space V.
- 11. Give an example of a linear transformation from $R^2 \rightarrow R^2$.
- 12. Write the kernel of the identity transformation on a vector space V over F.

 $(12 \times 1 = 12 \text{ Marks})$

PART B: Answer any ten questions. Each carries 4 marks.

- 13. Find the gcd of 24 and 138.
- 14. If p is a prime and p/ab, then either p/a or p/b.
- 15. Prove that $\sqrt{2}$ is irrational.
- 16. Prove that if $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$ and $ac \equiv bc \pmod{n}$.
- 17. Find the canonical form of 2093.
- 18. Solve the congruence $15x \equiv 27 \pmod{18}$.
- 19. Prove that if p is a prime, then $a^p \equiv a(modp)$ for any integer a.
- 20. Find the number of zeros with which the decimal representation of 50!terminates.
- 21. Calculate the value of $\varphi(270)$.
- 22. Prove that any line L that passes through the origin is a subspace of R^2 .
- 23. Find the subspace of R^3 spanned by the singleton $\{(1,0,0)\}$.
- 24. Prove that $\{(1,1,2),(3,2,5),(2,1,3)\}$ is a linearly dependent subset of \mathbb{R}^3 .
- 25. Let V and W be vector spaces. Prove that the linear mapping $f: V \to W$ is injective if and only if $Ker f = \{0\}$.
- 26. Show that any vector space V of dimension $n \ge 1$ over a field F is isomorphic to F^n .

 $(10 \times 4 = 40 \text{ Marks})$ (PTO)

PART C: Answer any six questions. Each carries 7 marks.

- 27. Find the complete solution of the linear Diophantine equation 172x + 20y = 1000.
- 28. Prove that there are infinitely many primes.
- 29. Show that $2^{20} 1$ is divisible by 4!.
- 30. Prove that φ is a multiplicative function.
- 31. Find the remainder when 15!is divided by 17.
- 32. Find the remainder when $1! + 2! + \cdots + 100!$ Is divided by 15.
- 33. Prove that the intersection of any two subspaces of a vector space V is again a subspace of V.
- 34. Let V be a finite dimensional vector space. If G is a finite spanning set of V and if I is a linearly independent subset of V such that $I \subseteq G$, then prove that there is a basis B of V such that $I \subseteq B \subseteq G$.
- 35. Prove that a linearly mapping is completely determined by its action on basis.

 $(6 \times 7 = 42 \text{ Marks})$

PART D: Answer any two questions. Each carries 13 marks.

- 36. State and prove the Chinese Remainder Theorem.
- 37. Let m be a positive integer, let d be the g.c.d of a and b. Then prove that the equation ax = b has a solution in Z_m if and only if d divides b.
- 38. State and prove the Dimension Theorem.

 $(2 \times 13 = 26 \text{ Marks})$