D6BMT1802 (S2)

(Pages:2)

Name:.....

Reg. No:.....

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023 MATHEMATICS

(Supplementary - 2018 Admission)

AMAT6B10T: COMPLEX ANALYSIS

Time: Three Hours

Maximum Marks:120

Part A: Answer All the questions. Each carries 1 mark.

- 1. Prove that $u = x^3 3xy^2 + 3x^2 3y^2 + 1$ is harmonic.
- 2. Show that the function $f(Z) = e^{-x} \cos y i e^{-x} \sin y$ is analytic in its domain.
- 3. Write the principal value of $Ln[(1+i)^4]$ in the form a+ib.
- 4. State Caushy's Residue theorem.
- 5. Give an example of a differentiable function which is nowhere analytic.
- 6. Find the simple poles, if any for the fuction $f(z) = \frac{(z-1)^2}{z^2(z^2+1)}$.
- 7. Evaluate $\int_C \frac{e^z}{z-\pi i} dz$, where is the circle |z|=4.
- 8. Find the Maclaurin series expansion of $f(z) = \frac{1}{(1-z)^2}$.
- 9. Show that z=0 is an essential singularity of the function $f(z)=z^3sin\frac{1}{z}$.
- 10. Determine the order of the zero of the function $z(e^z 1)$.
- 11. If $e^z = e^{x+iy}$ then $arg(e^z)$.
- 12. Evaluate $\int_C xy^2ds$ where C is the quarter circle $x=4cost, y=4sint, 0 \le t \le \frac{\pi}{2}$.

 $(12 \times 1=12 \text{ Marks})$

Part B: Answer any Ten questions. Each carries 4 marks.

- 13. Prove or disprove: $|sinz| \le 1$ for all complex numbers z. Justify your claim.
- 14. Verify Cauchy-Riemann equations for the function $f(z) = \ln z$.
- 15. Show that poles of an analytic function are isolated.
- 16. Find all complex solutions of $e^z = 1 + i$.
- 17. Find the residue at each pole of the function $f(z) = \frac{\cos(z)}{z^2(z-\pi)^3}$.
- 18. Find the radius of convergence of the power series: $\sum_{n=0}^{\infty} \frac{n!(z-i)^n}{n^n}$

(PTO)

- 19. Find the Residue of tanz at $z = \frac{\pi}{2}$.
- 20. Evaluate $\int_{|z|=1} \overline{z} dz$.
- 21. Find the principle value of i^i .
- 22. Locate the singular point if any, of $f(z) = \frac{1}{\sin(\pi/z)}$ in the complex plane.
- 23. Suppose z_0 is any constant complex number interior to any simple closed curve C. Show that for a positive integer n, $\int_C \frac{1}{(z-z_0)^n} dz = \begin{cases} 2\pi i, & \text{if } n=1.\\ 1, & \text{if } n \neq 1. \end{cases}$
- 24. Find the Taylor series expansion of $f(z) = e^z$ around $z = i\pi/2$.
- 25. Verify Cauchy-Riemann equation for the function $f(z) = \ln z$.
- 26. If f(z) = u + iv is analytic then derive the condition under which v + iu is analytic.

$$(10 \times 4 = 40 \text{ Marks})$$

Part C: Answer any Six questions. Each carries 7 marks.

- 27. Find the harmonic conjugate of $u = x^4 6x^2y^2 + y^4$.
- 28. Expand $f(z) = \frac{z-1}{z+1}$ as a Taylor series about z = 1.
- 29. State and prove Liouville's theorem.
- 30. Evaluate $\int_C \frac{z^2+1}{z^2-1} dz$, where C: |z-1|.
- 31. State and prove the Cauchy's Integral formula.
- 32. Using Cauchy's Residue theorem evaluate $\int_C \frac{z+1}{z^2} dz$, where C is |z| = 1.
- 33. Show that $tan^1(z) = \frac{i}{2}log\frac{i+z}{i-z}$:
- 34. Find the residues of $f(z) = \frac{z^3}{(z-1)^4(z-2)(z-3)}$.
- 35. Find an analytic function in terms of z, whose real part is $e^{x}(x\cos y y\sin y)$.

$$(6 \times 7 = 42 \text{ Marks})$$

Part D: Answer any Two questions. Each carries 13 marks.

- 36. Expand $f(z) = \frac{1}{(z+1)(z+2)}$ as a Laurent series valid for 0 < |z+1| < 2.
- 37. Evaluate $\int_0^\infty \frac{1}{(x^2+1)^2} dx$.
- 38. a). State and prove Cauchy's Residue theorem.
 - b). Evaluate $\int_{|z|=1} \frac{e^z}{\cos(\pi z)} dz$.

$$(2 \times 13 = 26 \text{ Marks})$$