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SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

MATHEMATICS
(Supplementary - 2018 Admission)
AMAT6B09T: REAL ANALYSIS

Time: Three Hours Maximum Marks:120
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Section A: Answer all the twelve questions. Each carries 1 mark.

Define bounded function f on a subset A of R. Give one example.

Is the function f :[0,4] — R defined by f(z) = y/z uniformly continuous ?
Justify your claim. ' -

Define Lipschitz function.

Evaluate f14 v i};ﬁ dt.

Find the norm of the partition P = (0, .5, 2.5, 3.5, 4) of the interval [0, 4].

Show that every constant function on [a,b] is Riemann integrable.
State true or false: f: [a,b] — R is continuous on [a,b], then f € Ra,b].

Show that lim -= =0 forall z € R, x > 0.
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State Weierstrass M-test.
Evaluate the integral [ 1 dz.
Express B(m,n) in terms of I'(m) and I'(n).

Define gamma function.
(12 x 1 =12 Marks)

Section B: Answer any ten questions. Each carries 4 marks.

Let f and g are continuous on A C R, then show that f + g is continuous
on A.

Show that the polynomial f(z) = 2?4+ z — 1 has a root between 0 and 1.
Show that every Lipschitz function is uniformly continuous.

Show that f(x) =sinz? is not uniformly continuous on [0, c0).
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Let f € ’R[a,b]', then show that kf € R[a,b] for any constant k.
Statc substitution theorem for integrals.
Evaluate: fol -1—;1-;2- dz.

Find F'(z) if F(z):= [7(1+¢)7" dt.
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Find the radius of convergence of the power series )

Define uniform norm ||¢||4 for a bounded function ¢ on A C R.
Evaluate ||¢||4 for ¢:[-3,2] = R defined by ¢(z) = 3.

Evaluate: lim e ™ for z € R, > 0.
n—o0

Evaluate the integral [;°e™*" dz.
Prove that I'() = /7.

Evaluate B(3,5). : :
10 x 4 = 40 Marks

Section C: Answer any six questions. Each carries 7 marks.

Let I be a closed bounded interval and let f : I — R be continuous on I.
Then prove that f is uniformly continuos on 1.

Prove that the function f(a:) = z? is uniformly continuous on —[1,1].
Let f:[a,b] — R is monotone on [a,b], then prove that f € Rla,b].
Statc and Prove : Fundamental thcorem of Calculus (Sccond form).
If f € Rla,b], then show that f is bounded on [a,b].
Show that Y o ;£ uniformly convergent on [—1,1].
Show that f,(z) = ﬁ converges pointwise to f(z) =0 on [0, 00).
Prove that [~ %22 dx converges.
Evaluate the integral [ 2 dz.
(7 x 6 = 42 Marks)

Section D: Answer any two questions. Each carries 13 marks.

Statc and Prove Location of Roots Theorem.
State and Prove Squeeze theorem for Riemann integrals.

State and Prove Maximum-Minimum Theorem.
(2 x 13 = 26 Marks)



