eg.No	 ********	••••

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

ECONOMICS & MATHEMATICS (DOUBLE MAIN)

GDMT6B09T: NUMERICAL ANALYSIS

Time: 2½ Hours Maximum Marks: 80

SECTION A: Answer the following questions. Each carries 2 marks.

(Ceiling 25 Marks)

- 1. Find the root of the equation 2x = cosx + 3 correct to three decimal places.
- 2. Let $f(x) = x^3 \cos x$ and $p_0 = -1$. Use Newton's method to find p_2 . Could $p_0 = 0$ be used?
- 3. Explain Method of False Position.
- 4. For the given function $f(x) = \cos x$, let $x_0 = 0$, $x_1 = 0.6$, and $x_2 = 0.9$. Construct interpolation polynomials of degree at most one to approximate f(0.45).
- 5. Write Newton's divided difference formula of degree n.
- 6. Form the divided difference table from the following table

x	f(x)	
1.0	0.7651977	
1.3	0.6200860	
1.6	0.4554022	
1.9	0.2818186	
2.2	0.1103623	

- 7. Write first degree Lagrange interpolating polynomial.
- 8. Write Three Point End Point formula
- 9. What is the maximum error in second derivative midpoint formula?
- 10. Define numerical quadrature.
- 11. Compare the Trapezoidal rule and Simpson's rule approximations to $\int_0^1 f(x) dx$ when $f(x) = e^x$
- 12. Define Lipschitz condition. Give an example.
- 13. Show that there is a unique solution to the initial-value problem $y' = 1 + t \sin(ty)$, $0 \le t \le 2$, y(0) = 0.
- 14. Write RungeKutta second order formula.
- 15. Write modified Euler method formula.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 35 Marks)

- 16. Use a fixed point iteration method to determine a solution accurte to within 10^{-2} for $x^4 3x^2 3 = 0$, use $P_0 = 1$.
- 17. Find an approximate root of the equation $x^2 4x + 4 lnx = 0$ for $1 \le x \le 2$ using secant method.
- 18. construct interpolating polynomials for the following data and find f(0.9), if f(0.6) = -0.17694460, f(0.7) = 0.01375227, f(0.8) = 0.22363362, f(1.0) = 0.65809197.

19. The following data are given for a polynomial P(x) of unknown degree

x	0	1	2
P(x)	2	-1	4

Determine the coefficient of x^2 in P(x) if all third-order forward differences are 1.

20. Values for $f(x) = xe^x$ are given in Table given below. Use all the applicable three-point and five point formulas to approximate f'(2.0).

addie X amerika	f(x)	
1.8	10.889365	
1.9	12.703199 14.778112	
2.0		
2.1	17.148957	
2.2	19.855030	

- 21. Use the forward-difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ using h = 0.1, h = 0.05, and h = 0.01 and determine bounds for the approximation errors.
- 22. Show that the initial value problem

$$\frac{dy}{dt} = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$, is well posed on $D = \{(t, y)/0 \le t \le 2\}$.

23. Use the Modified Euler method to approximate the solution to

$$y' = \frac{y}{t} - \left(\frac{y}{t}\right)^2$$
, $1 \le t \le 1.2$, $y(1) = 1$, with $h = 0.1$.

SECTION C: Answer any 2 questions. Each carries ten marks.

- 24. Use the Bisection method to find solution, accurate to within 10^{-5} for $3x e^x = 0$ for $1 \le x \le 2$.
- 25. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate

$$f(0.9)$$
, if $f(0.6) = -0.17694460$, $f(0.7) = 0.01375227$, $f(0.8) = 0.22363362$, $f(1.0) = 0.65809197$.

Use the error formula to find a bound for the error and compare the bound to the actual error, Given $f(x) = \sin(e^x - 2)$.

26. Given the function f at the following values,

x	1.8	2.0	2.2	2.4	2.6
f(x)	3.12014	4.42569	6.04241	8.03014	10.46675

approximate $\int_{1.8}^{2.6} f(x) dx$ using any four suitable quadrature formulas.

27. Find by Euler method the value of y(2), given

$$y' = -(y+1)(y+3)$$
, $y(0) = -2$, with $h = 0.2$.
(2 x 10 = 20 Marks)