D5BMT2201

(PAGES 2)

Reg. No
Name:

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2024

(Regular/Improvement/Supplementary)

MATHEMATICS GMAT5B05T: ABSTRACT ALGEBRA

Time: 2 ¹/₂ Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 25 marks)

- 1. Make addition and multiplication tables of \mathbf{Z}_4
- Let S be the set of all ordered pairs (m,n) of positive integers. For (a₁, a₂) ∈ S and (b₁, b₂) ∈ S, define (a₁, a₂) ~ (b₁, b₂) if a₁ + b₂ = a₂ + b₁. Show that ~ is an equivalence relation.

3. Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$$
 and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$. Verify that $(\sigma \tau)^{-1} = \tau^{-1} \sigma^{-1}$.

- 4. Write $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 6 & 2 & 5 & 9 & 3 & 10 & 8 & 4 & 7 & 1 \end{pmatrix}$ as a product of disjoint cycles.
- 5. Let $\sigma = \begin{pmatrix} 2 & 5 & 6 & 8 & 12 & 4 & 7 & 9 & 3 & 11 \end{pmatrix}$ be a cycle in S_{12} . Is σ an even transposition? Why or why not?
- 6. Define *on Z by a*b = max {a,b}. Determine whether or not *gives a group structure on Z. If it is not a group, say which axiom fail to hold.
- 7. Prove that S_3 is not a cyclic group.
- 8. Give an example for a group of order 6 which is not cyclic.
- 9. Give the subgroup diagram of \mathbb{Z}_{28} .
- 10. Let $\langle \mathbb{R}^{\times}, . \rangle$ be set of nonzero real numbers under multiplication and $\langle \mathbb{R}^+, . \rangle$ be set of positive real numbers under multiplication. Define $\phi : \mathbb{R}^{\times} \to \mathbb{R}^+$ by $\phi(x) = |x|$. Prove that ϕ is a homomorphism.
- 11. Let $G = \mathbb{Z}_3 \times \mathbb{Z}_6$ and let $H = \langle (1,2) \rangle$. List all cosets of H.
- 12. Is the group \mathbf{Z}_{p} simple? Why or why not?
- 13. Find the multiplicative inverse of $(1-\sqrt{2})$ in the field $\mathbb{Q}(\sqrt{2})$.
- 14. Find $Aut(\mathbf{Z})$.
- 15. Is $A = \{m + n\sqrt{2} | m, n \in \mathbb{Z} \text{ and } m \text{ is odd} \}$ subring of the field **R** of real numbers? Why or why not?

SECTION B: Answer the following questions. Each carries *five* marks (Ceiling 35 marks)

16. Let S be any set and let σ and τ be disjoint cycles in Sym(S). Prove that $\sigma\tau = \tau\sigma$.

17. Let G be a group, and suppose that a and b are any elements of G. Prove that

$$(ab)^2 = a^2b^2$$
 if and only if $ab = ba$.

18. Show that
$$H = \left\{ \begin{bmatrix} a & 0 \\ c & d \end{bmatrix} | ad \neq 0 \right\}$$
 is a subgroup of $GL_2(\mathbb{R})$.

19. Find the cyclic subgroup generated by $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ in $GL_2(\mathbf{Z}_3)$.

- 20. Let G be a cyclic group and let H be a nonempty subgroup of G. Prove that H is cyclic.
- 21. Let G_1 and G_2 be groups and let $\phi: G_1 \to G_2$ be an onto homomorphism. Prove that there exists an isomorphism $\overline{\phi}: G_1/\ker(\phi) \to G_2$.
- 22. Let \mathbb{F} be a field, $f(x) \in \mathbb{F}[x]$ be a nonzero polynomial, and let $c \in \mathbb{F}$. Prove that there exists a polynomial $q(x) \in \mathbb{F}[x]$ such that f(x) = q(x)(x c) + f(c).
- 23. Let R be a commutative ring and let R^{\times} be the set of all units of R. Prove that R^{\times} is an abelian group under the multiplication of R.

SECTION C: Answer any two questions. Each carries ten marks.

- 24. (i) Find the multiplicative inverse of [91] in \mathbb{Z}_{2565} .
 - (ii) Let G be a group. Let a be an element of G with o(a) = m and let $k \in \mathbb{Z}$. Prove that $a^k = e$ if and only if m|k.
 - (iii) Find all normal subgroups of S_3 .
- 25. (i) Let *G* be a group and let *H* be a subgroup of *G*. For $a, b \in G$ define $a \sim b$ if $ab^{-1} \in H$. Prove that \sim is an equivalence relation.
 - (ii) Let G be a finite group and let H be a subgroup of G. Prove that the order of H is a divisor of the order of G.
 - (iii) Let $G = \mathbb{Z}_{21}^{\times}$. If $H = \{[1], [8]\}$ and $K = \{[1], [4], [10], [13], [16], [19]\}$, then find *HK* and *KH*. Is *HK* = *KH*?
- 26. (i) Define permutation group.
 - (ii) Prove that every group is isomorphic to a permutation group.

27. (i) Compute the factor group
$$\frac{(\mathbf{Z}_6 \times \mathbf{Z}_4)}{\langle (2,2) \rangle}$$

- (ii) Let G be a group and let H be a normal subgroup of G. Prove that abH is the set theoretic product (aH)(bH), for all $a, b \in G$.
- (iii) Let \mathbb{F} be a field and let *R* be a subring of \mathbb{F} . Prove that *R* is an integral domain.