(PAGES: 2)

Reg. No.....

Name:

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2024 COMPUTER SCIENCE AND MATHEMATICS (DOUBLE MAIN) GDMA5B08T: REAL ANALYSIS

Time: 2 ¹/₂ Hours

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 25 marks)

- 1. Define uncountable set and give one example.
- 2. If $S = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$, then prove that $\inf S = 0$.
- 3. State the nested intervals property.
- 4. State Characterization of Closed Sets.
- 5. Show that $lim\left(\frac{1}{n}\right) = 0$ by using the definition of limit.
- 6. Show that the sequence $(\frac{1}{n})$ is a Cauchy sequence.
- 7. Prove that if a sequence $X = (x_n)$ of real numbers converges to a real number x, then any subsequence $X' = (x_{nk})$ of X also converges to x.
- 8. State Monotone Subsequence Theorem and the Bolzano -Weierstrass Theorem.
- 9. Give examples for a convergent sequence and a divergent sequence.
- 10. Check the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
- 11. Calculate the value of $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^{2n}$.
- 12. Define open set and closed set in \mathbb{R} .
- 13. Show that the entire set $\mathbb{R} = (-\infty, \infty)$ is open.
- 14. Define a sequence in \mathbb{R} and give one example.
- 15. Define open cover of a subset of \mathbb{R} .

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 35 Marks)

- 16. Check the convergence of the geometrical series.
- 17. Show that every contractive sequence is a Cauchy sequence, and therefore is convergent.

D5BMC2204

Maximum Marks: 80

18. Show that $lim\left(\frac{1}{n^2+1}\right) = 0$ by using the definition of limit.

19. Let $X = (x_n : n \in \mathbb{N})$ be a sequence of real numbers and let $m \in \mathbb{N}$. Then prove that the *m*-tail $X_m = (x_{m+n} : n \in \mathbb{N})$ of *X* converges if and only if *X* converges.

In this case, $\lim X_m = \lim X$.

- 20. Let S be a nonempty subset of R that is bounded above, and let a be any number in R. Define the set a + S = {a + s: s ∈ S}.
 Prove that sup(a + S) = a + sup S.
- 21. Use Mathematical Induction to prove that if the set *S* has *n* elements, then P(S) has 2^n elements.
- 22. (a) Define Cauchy sequence.
 - (b) Show that the sequence $(1 + (-1)^n)$ is not a Cauchy sequence.
- 23. Illustrate with an example that the intersection of infinitely many open sets in \mathbb{R} need not be open.

SECTION C: Answer any two questions. Each carries ten marks.

- 24. State and prove Characterization of Closed Sets.
- 25. (a) Show that if c > 0, then $\lim \left(c^{\frac{1}{n}}\right) = 1$.

(b) Show that $\lim (n^{1/n}) = 1$.

- 26. (a) Let $X = (x_n)$ be a sequence of real numbers, then prove that the following are equivalent:
 - (i) The sequence $X = (x_n)$ does not converge to $x \in \mathbb{R}$.
 - (ii) There exists an $\varepsilon_0 > 0$ such that for any $k \in \mathbb{N}$, there exists $n_k \in \mathbb{N}$ such that $n_k \ge k$ and $|x_{nk} x| \ge \varepsilon_0$.
 - (iii) There exists an $\varepsilon_0 > 0$ and a subsequence $X' = (x_{nk})$ of X such that $|x_{nk} x| \ge \varepsilon_0$ for all $k \in \mathbb{N}$.
 - (b) State the Divergence Criterion of a sequence.
- 27. Prove that the following statements are equivalent:

(a) *S* is a countable set.

- (b) There exists a surjection of \mathbb{N} onto *S*.
- (c) There exists an injection of S into \mathbb{N} .

(2 X 10 = 20 Marks)