(PAGES 2)

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(Supplementary – 2018 Admission)

MATHEMATICS

AMAT5B07T: BASIC MATHEMATICAL ANALYSIS

Time: 3 Hours

Maximum Marks: 120

PART A: Answer all the questions. Each carries one mark.

- Let *f* and *g* be real valued functions on R defined by *f*(*x*) = 2*x* and *g*(*x*) = *x*² +1.
 Compute *f* ∘ *g* and *g* ∘ *f*.
- 2. State the Principle of Strong Induction.
- 3. Write the exponential form of the complex number $1 + \sqrt{3}i$.
- 4. Give an example of a countable collection of finite sets whose union is not finite.
- 5. Determine the set of real numbers x satisfying the condition |2x + 3| < 7.
- 6. Find the supremum of the set $\left\{1 + \frac{1}{n} : n \in N\right\}$.
- 7. Give an example of two divergent sequences X and Y such that their product XY converges.
- 8. Give an example of an unbounded sequence that has a convergent subsequence.
- 9. Find the infimum of the set{ $1 (-1)^n : n \in N$ }.
- 10. Define contractive sequence.
- 11. Give an example of an open subset of R which is not an open interval.
- 12. Find the multiplicative inverse of the complex number 2 + 5i.

(12 x 1 = 12 Marks)

PART B: Answer any ten questions. Each carries four marks.

- 13. Let A={x $\in R$: $x \neq 1$ } and define $f(x) = \frac{2x}{x-1}$. Prove that f is a bijection.
- 14. Show that the set of even natural numbers is denumerable.
- 15. Let a and b be in R such that a.b = 0. Prove that either a = 0 or b = 0.
- 16. If $a, b \in R$, then show that $|a + b| \le |a| + |b|$.
- 17. Give an example of a subset of R having a supremum but no infimum and a subset of R having a supremum but no infimum.
- 18. State and prove Archimedean property.
- 19. Prove that a sequence in R can have at most one limit.

- 20. Find $\lim_{n \to \infty} \frac{n^2 1}{3n^2 3}$.
- 21. Show that $\lim_{n\to\infty} \frac{\sin}{n} = 1$.
- 22. Show that the sequence $(\frac{1}{n})$ is a Cauchy sequence.
- 23. Find the complex conjugate of $\frac{2+i}{3+i}$.
- 24. Prove that amplitude $(z_1 z_2)$ = amplitude (z_1) + (amplitude (z_2) .
- 25. Prove that Real part(z) = $\frac{z+\bar{z}}{2}$.
- 26. Find the limit points of the set $S = \{z: 2 < |z 1| < 3\}$.

(10 x 4 = 40 Marks)

PART C: Answer any six questions. Each carries seven marks.

- 27. Prove that $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$
- 28. If A is any set, then prove that there is no surjection of A onto the set $\mathcal{P}(A)$ of all subsets of A.
- 29. State and prove Bernoulli's Inequality.
- 30. Let S be a nonempty subset of R that is bounded above and let a be any number in R. Prove that sup(a + S) = a + Sup S.
- 31. State and prove Nested Intervals Property.

32. Let (x_n) be a sequence of real numbers such that $L = \lim_{x_n} \left(\frac{x_{n+1}}{x_n}\right)$ exists.

If L < 1, then prove that (x_n) convergence to 0.

- 33. Prove that a monotone sequence of real numbers is convergent if and only if it is bounded.
- 34. Show that every contractive sequence is convergent.
- 35. Find all the values of $\sqrt{3-4i}$.

(6 x 7 = 42 Marks)

PART D: Answer any two questions. Each carries thirteen marks.

- 36. Prove that there exists a positive real number whose square is 2.
- 37. State and prove Bolzano-Weierstrass Theorem.
- 38. Show that the region in the complex plane determined by the condition $\left|\frac{z-i}{z+i}\right| \ge 2$ is circle. Find the centre and radius of that circle.

(2 x 13 = 26 Marks)