D5BMT2102

(Pages: 2)

Name:..... Reg. No:....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(Regular/Improvement/Supplementary)

MATHEMATICS

GMAT5B06T: REAL ANALYSIS

Time: $2\frac{1}{2}$ Hours

Maximum Marks: 80

SECTION A: Answer the following questions. Each carries 2 marks. (Ceiling 25 Marks.)

- 1. Find the set of all real numbers which satisfy the relation $\, {\bf x^2} \leq 5 {\bf x} 6 \, .$
- 2. State completeness property of \mathbb{R} .
- 3. Find the supremum and infimum of $\{1/n : n \in \mathbb{N}\}$
- 4. State nested intervals property.
- 5. Prove that $\{((-1)^n)\}$ is a divergent sequence.
- 6. Define monotone sequence and give one example.
- 7. State the Density theorem.
- 8. Give a sequence of real numbers which converges to \sqrt{a} .
- 9. Define Cauchy sequence of $\mathbb R$. Give an example.
- 10. Give an example of a bounded sequence which is not Cauchy.
- 11. State comparison test for series.
- 12. Define contractive sequence.
- 13. Give an example to show that n^{th} term of a series approaches zero does not imply that the series is convergent.
- 14. Show that a bounded monotone increasing sequence is a Cauchy sequence.
- 15. Using limit comparison test prove that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$ is divergent.

(PTO)

SECTION B: Answer the following questions. Each carries 5 marks. (Ceiling 35 Marks)

- 16. Prove that $\sqrt{2}$ is not a rational number.
- 17. Prove that $\lim(\frac{3n+2}{n+1}) = 3$ using $\epsilon \delta$ definition.
- 18. If a subset S of \mathbb{R} that contains at least two points and has the property if $x, y \in S$ and x < y, then $[x, y] \subseteq S$, then prove that S is an internal.
- 19. State and prove Bolzano-Weierstrass theorem.
- 20. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges to 1.
- 21. Define the Cantor set. List two properties of it.
- 22. Prove that intersection of an arbitrary collection of closed sets in \mathbb{R} is closed.
- 23. Prove that a closed subset of \mathbb{R} contains all of its cluster points.

SECTION C: Answer any 2 questions. Each carries 10 marks.

24.

- (a). State and prove triangle inequality of real numbers.
- (b). If $\mathbf{a} \in \mathbb{R}$ is such that $\mathbf{0} \leq \mathbf{a} < \epsilon$ for every $\epsilon > \mathbf{0}$, then prove that $\mathbf{a} = \mathbf{0}$.
- (c). Prove that if $\mathbf{a} \in \mathbb{R}$ and $\mathbf{a} \neq \mathbf{0}$, then $\mathbf{a}^2 > \mathbf{0}$.

25.

- (a). Find $\lim(\frac{2n}{n^2+1})$.
- (b). State and prove Squeeze theorem.

26.

- (a). Show that a sequence in \mathbb{R} is convergent if and only if it is a Cauchy sequence.
- (b). Check whether the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + n}}$ is convergent or not.

27.

- (a). Show that union of an arbitrary collection of open subsets in \mathbb{R} is an open set in \mathbb{R} .
- (b). Prove that $\mathbb{N} \times \mathbb{N}$ is denumerable.

$$(2 \ge 10 = 20 \text{ Marks})$$