Reg.No.....

Name:

FIFTH SEMESTER B.Sc DEGREE EXAMINATION, NOVEMBER 2023 (Regular/Improvement/Supplementary)

ECONOMICS & MATHEMATICS (DOUBLE MAIN)

GDMT5B07T: REAL ANALYSIS

Time: 2 Hours

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries two marks

(Ceiling 20 Marks)

- 1. Prove that the set Z of all integers is denumerable.
- 2. State Squeeze Theorem for Sequences.
- 3. State Limit Comparison Test.
- 4. Prove that if *S* is a countable set, then there exists a surjection of \mathbb{N} onto *S*.
- 5. Define supremum of a non empty subset of \mathbb{R} . Find the supremum of the set $\left\{1 \frac{1}{n}, n \in \mathbb{N}.\right\}$
- 6. Prove that $(1 + x)^n \ge 1 + nx$ for all $n \in N$.
- 7. Using an example, show that the convergence of the sequence $(|x_n|)$ need not imply the convergence of (x_n) .
- 8. State Monotone Convergence Theorem.
- 9. Prove that if the series $\sum x_n$ converges, then $\lim x_n = 0$.
- 10. Define a properly divergent sequence.
- 11. Prove that if $a, b \in \mathbb{R}$ then $|a + b| \le |a| + |b|$.
- 12. Test whether the series $\sum_{n=1}^{\infty} \frac{1}{n^2+n}$ is convergent or not.

SECTION B: Answer the following questions. Each carries *five* marks.

(Ceiling 30 Marks)

- 13. State and prove Bolzano-Weierstrass Theorem.
- 14. If A_m is a countable set for each $m \in N$, then the union $A = \bigcup_{m=1}^{\infty} A_m$ is countable.
- 15. Prove that a convergent sequence of real numbers is bounded..
- 16. Let $Y = (y_n)$ be defined inductively by $y_1 = 1$, $y_{n+1} = \frac{1}{4}(2y_n + 3)$ for $n \ge 1$. Show that $\lim Y = \frac{3}{2}$.

17. Prove that the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$ is divergent.

- 18. Show that there does not exist a rational number r such that $r^2 = 2$.
- 19. Prove that a sequence in \mathbb{R} has at most one limit.

SECTION C: Answer any one question. Each carries ten marks.

- 20. Prove that the set \mathbb{R} of real numbers is not countable.
- 21. A sequence of real numbers is convergent if and only it is a Cauchy sequence. Prove.