(DA	GES	2)
(PA	UES	4

D	5	P	D	L	2	n	n	1
v	J	D		11	Lui	v	v.	Ŧ.

Reg.No)
Name:	***************************************

FIFTH SEMESTER B.Sc. DERGEE EXAMINATION, NOVEMBER 2022 (Regular/Improvement/Supplementary)

PHYSICS GPHY5B09T: ELECTRONICS (ANALOGUE & DIGITAL)

Time: 2 Hours Maximum Marks: 60

SECTION A: Answer the following questions. Each carries 2 marks. (Ceiling 20 Marks)

- 1. Compare the features of a bridge wave rectifier and centre tap rectifier.
- 2. Define ripple factor of a rectifier. Give its value for full wave rectifier.
- 3. Obtain the relation between current amplification factors in CB and CE transistor configurations.
- 4. What is meant by active region in transistor?
- 5. Why does RC coupled amplifier give lower gain in the upper frequency range compared to its mid frequency range?
- 6. How does the negative voltage feedback increase bandwidth of an amplifier?
- 7. Differentiate between differential mode and common mode voltage gain of an Op-Amp.
- 8. What do you mean by noninverting and inverting input of a differential amplifier?
- 9. Convert [11011.011]₂ to its equivalent decimal number.
- 10. Represent +3 and -3 in four bit representation using sign magnitude method.
- 11. What is a logic gate? Describe OR function with a 2-input OR gate.
- 12. What is a half adder? Draw the circuit of a half adder.

SECTION B: Answer the following questions. Each carries 5 marks. (Ceiling 30 Marks)

- 13. A crystal diode having internal resistance $rf = 10\Omega$ is used for half-wave rectification. If the applied voltage v = 50 sinGDt and load resistance $RL = 900\Omega$, find:
 - (i) Im, Idc, Irms
- (ii) a.c. power input and d.c. power output
- (iii) d.c. output voltage
- 14. For a transistor amplifier, if RC = 15 k Ω , RL = 10 k Ω , Rin = 3.5 k Ω , β = 60, find the output voltage for an input voltage of 1.5 mV r.m.s. Also find the power gain.
- 15. Define power gain and voltage gain in decibel. Find the gain in the following cases
 - a) Voltage gain of 60
- b) power gain of 200.
- 16. With the help of a diagram explain the action of an op-amp differentiator. Obtain the expression for the voltage gain.

(PTO)

- 17. Convert the following decimal numbers to binary (i) -35 (ii) 23.56 (iii) 2.8x108
- 18. A logic circuit with 4 bit input should give a high output for inputs 0,1,2,3,4,6,8,9,10 and 11. Obtain the simplest circuit using Karnaugh map method.
- 19. Simplify the expression $Y = \overline{AB + AC} + \overline{AB}C$, using Boolean algebra.

SECTION C: Answer any 1 question. Each carries 10 marks.

- 20. What is the need for biasing in transistor? Mention the conditions required for faithful amplification. Explain stabilization and derive an expression for stability factor.
- 21. Distinguish between LC and RC oscillators. With the help of a circuit diagram, describe the working of Wein Bridge oscillator. What are its merits and demerits?

 $(1 \times 10 = 10 \text{ Mark})$