D5	ÐΙ	\mathbf{H}	76	m	3
DJ.	DI		4	w	J

D	1	ES	2)
(P	AU	ES	4)

Reg.No)	•••••	•••••	•••••	••••

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(Regular/Improvement/Supplementary)

PHYSICS

GPHY5B08T: OPTICS

Time: 2 Hours

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 20 Marks)

- 1. State Fermat's principle of optimum path and deduce laws of refraction.
- 2. State principle of superposition
- 3. What are the conditions for obtaining sustained interference pattern on a screen.
- 4. A very thin film does not show colour, why?
- 5. Compare zone plate and convex lens
- 6. Define resolving power and dispersive power of a plane diffraction grating
- 7. What is meant by optical activity?
- 8. How is a hologram different from a photograph?
- 9. What are the applications of a hologram?
- 10. Draw the refractive index profile and ray diagram of graded index fibre.
- 11. Define numerical aperture of an optical fibre.
- 12. Write note on fibre optic sensors.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 30 Marks)

- 13. A thin biconvex lens of refractive index 1.5 has radius of curvatures R_1 = +100 cm and R_2 = -60 cm. For an object placed at a distance of 100 cm from the lens, determine the position and linear magnification of the image.
- 14. A biprism is placed 5 cm from a slit illuminated by sodium light of wavelength 589 nm. The width of the fringes obtained on a screen 75cm from the biprism is 9.424 x 10⁻² cm. What is the distance between the two coherent sources?
- 15. If a zone plate has a principal focal length of 50cm corresponding to λ =6 x 10⁻⁵ cm, obtain the radii of different zones. What is the principal focal length for λ =5 x 10⁻⁵ cm?

(PTO)

- 16. A plane polarised light of wavelength 500 nm, passes through a uniaxial crystal with its optic axis parallel to the faces. Determine the least thickness of the plate for which emergent ray is plane polarised. Given refractive index of O-ray is 1.5442 and E-ray is 1.5533.
- 17. A step index fibre has a core of refractive index 1.54 and numerical aperture 0.45. Find the refractive index of cladding and also calculate the value of angle of acceptance cone.
- 18. Explain how specific rotation of a liquid is determined using Laurentz Half shade polarimeter.
- 19. With the help of a neat diagram explain the process of construction and reconstruction of a hologram.

SECTION C: Answer any one question. Each carries ten marks.

- 20. Explain interference by a plane parallel thin film illuminated by a plane wave and obtain the condition for maximum and minimum brightness.
- 21. Discuss Fraunhoffer diffraction at a single slit and obtain an expression for intensity distribution.

 Also draw the intensity distribution pattern.

12

 $(1 \times 10 = 10 \text{ Marks})$