D	5	P	D	Н	2	n	N	2	
37	\supset				L	v	u	L	

(PAGES 2)

Reg.No)
Name:	

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(Regular/Improvement/Supplementary)

PHYSICS GPHY5B07T: OUANTUM MECHANICS

Time: 2 Hours

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries 2 marks. (Ceiling 20 Marks)

- 1. Show graphically the variation of intensity of spectral line distribution with frequency for a black body.
- 2. Draw a graph showing the variation of photoelectric current with frequency and intensity of incident radiation.
- 3. Write down Heisenberg's uncertainty principle.
- 4. Write down the names of spectral lines emitted by hydrogen atom.
- 5. What was the conclusion of Frank-Hertz experiment?
- 6. What is meant by expectation value of a dynamical variable?
- 7. Write down the Schrodinger equation for a free particle and explain its solution.
- 8. Distinguish between free and confined particle.
- 9. What is zero point energy?
- 10. What is potential energy step penetration?
- 11. Write dimensional formula for spin. Explain spin of an electron.
- 12. Can a hydrogen atom in its ground state absorb a photon (of the proper energy) and end up in the 3d state?

SECTION B: Answer the following questions. Each carries 5 marks. (Ceiling 30 Marks)

- 13. In an experiment on Compton scattering the incident radiation has wavelength 2 A⁰. The wavelength of radiation scattered through 180⁰ is 2.048 A⁰. Calculate
 - (i) the wavelength of scattered radiation if they are viewed at an angle of 60° to the direction of incidence
 - (ii) the energy of recoil electron which scatters radiation through 60°.
- 14. Write and explain postulates of Quantum mechanics.
- 15. Normalize the wave function $\Psi = A \cos x$ for $0 \le x \le \pi/2$.
- 16. The wave function of a particle confined to a one-dimensional box of length L with rigid walls is given by $\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$; n = 1,2,3... Determine the energy eigen values.

(PTO)

- 17. Find the expectation value $\langle x^2 \rangle$ of the position of the particle trapped in a box of L wide.
- 18. A particle moving in one-dimensional potential is given by:

$$U(x) = 0$$
 $x < 0$

$$U(x) = U_0 \quad x \ge 0$$

Let E be the energy of particle and) $E > U_0$. Write down the Schrodinger equation for the particle and its solutions.

19. A sample of a certain element is placed in a 0.2 T magnetic field and suitably excited. How far apart are the Zeeman components of 450 nm spectral lines of the element?

SECTION C: Answer any 1 question. Each carries 10 marks.

- 20. Discuss Bohr atomic model and its limitations.
- 21. Discuss the non-classical behavior of quantum harmonic oscillator.

 $(1 \times 10 = 10 \text{ Marks})$