DA	CEC	2)
(ΓH)	GES	12)

D5	DD	H ₂	001
UJ	DI	114	UUI

Keg.No				*****
NT.				

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(Regular/Improvement/Supplementary)

PHYSICS

GPHY5B06T: COMPUTATIONAL PHYSICS

Time: 2 Hours

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 20 Marks)

- 1. Which are the two modes of using python?
- 2. Write python instruction to read a list from keyboard and save it as x.
- 3. List arithmetic operators in python.
- 4. Explain range () in python.
- 5. Explain how to find union and intersection of two sets using python.
- 6. What is the output of the code;

f=1

for i in range(2,5):

f=f*i

print(f)

- 7. With suitable example, explain any two conditional operators in python.
- 8. How matrices are created using numpy? Give one example.
- 9. Write the python instruction to add label to the axes in plots generated using matplotlib
- 10. Explain any two array operations.
- 11. What do you mean by curve fitting? Name any curve fitting technique.
- 12. Write the Taylor series expansion of sin(x).

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 30 Marks)

- 13. Write a python program to read an integer from the keyboard and print its factorial.
- 14. With suitable example, explain file input and file output in Python.
- 15. Write a python program to plot $\exp(x)$, for $0 \le x \le 10$.
- 16. Find $\int_0^1 y \, dx$ using Simpson's $1/3^{rd}$ rule from the table given below.

X	0	0.25	0.50	0.75	1.00
У	0	0.5625	1.25	2.0625	3.0

- 17. Using newton -Raphson method, solve the equation $x^3 x^2 2 = 0$. Take x=1.5 as the initial guess of the root.
- 18. Write a brief note about the use of numerical methods in the study of physical systems and phenomenon using computer simulations.
- 19. Write the second order differential equations which represent the motion of a Projectile. Explain the steps involved in the simulation of a projectile.

SECTION C: Answer any one question. Each carries ten marks.

20. Derive Newton's forward difference interpolation formula. Use it to find the value of y at x=0.5, from the set of tabulated values of y given below.

X	0	1	2	3	4	5
у	0	-1	0	3	8	15

21. With necessary theory, explain the simulation of free fall. Write a python code to read the initial height and print the time of fall and velocity with which the body hits the ground.

 $(1 \times 10 = 10 \text{ Marks})$