D ₅ B	PH ₁	702	(S3)	

(PAGES 2)

Reg. No	
Name:	

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(Supplementary - 2017 Admission)

PHYSICS

APHY5B07T: QUANTUM MECHANICS

Fime: 3 Hours	Aaximum	Marks:	8

SECTION A: Answer all questions. Each carries 1 mark.

1.	If the value of Compton wavelength is λ_c , the maximum Compton wavelength change is
2.	For $l = 2$, the orbital angular momentum L is
3.	Write down uncertainty principle-I
4.	Orbital angular momentum quantum number can have the values
5.	Operator correspondence of energy is
6.	According to Rayleigh-Jeans formula for black body spectrum, the energy density is proportional to
7.	What is the magnitude of angular momentum due to spin of an electron?

 $(8 \times 1 = 8 \text{ Marks})$

SECTION B: Answer any six questions. Each carries 4 marks.

8. Write down the possible values of magnetic quantum number.

- 9. Derive steady state Schrodinger equation from time dependent Schrodinger equation
- 10. Write a short note on scanning tunnelling microscope.
- 11. Show that group velocity is particle velocity.
- 12. Distinguish between normal and anomalous Zeeman effect.
- 13. Explain working of electron microscope using a diagram.
- 14. What are eigen values and eigen functions?
- 15. What is meant by normalized and orthogonal wave functions?
- 16. Show that pair production cannot occur in empty space.
- 17. Explain Bohr radius of a hydrogen atom. Give the expression for radius of orbits in terms of Bohr radius.

 $(6 \times 4 = 24 \text{ Marks})$

(PTO)

SECTION C: Problems: Answer any eight questions. Each carries 4 marks

- 18. The average period that elapses between the excitation of an atom and the time it emits the radiation is 10⁻⁹ sec. Determine the width of the excited state.
- 19. A photon of energy 1.02 MeV undergoes a Compton scattering through 180°. Calculate the energy of the scattered photon.
- 20. Calculate the energy (in eV) and momentum of an X-ray photon of wavelength 2 Å.
- 21. Find the expectation value of the momentum of a particle enclosed in a one-dimensional box.
- 22. A sample of a certain element is placed in a 0.2 T magnetic field and suitably excited. How far apart are the Zeeman components of 450 nm spectral lines of this element?
- 23. What voltage must be applied to an electron microscope to produce electrons of wavelength of 1.5 Å?
- 24. Calculate the excitation energy for n = 3 of He^+ atom.
- 25. Calculate the energy difference between the ground state and first excited state for an electron in one dimensional rigid box of length 10⁻¹⁴ m.
- 26. Calculate the de Broglie wavelength of an electron having kinetic energy of 100 eV.
- 27. An eigen function of the operator d^2/dx^2 is e^{2x} . Find the corresponding eigen value.
- 28. What is the shortest wavelength emitted by Balmer series in hydrogen spectrum?
- 29. What potential difference must be applied to stop fastest photoelectrons emitted by a surface when electromagnetic radiation of frequency 2.5 x 10¹⁵ Hz is allowed to fall on it. The work function of the surface is 5eV.

 $(8 \times 4 = 32 \text{ Mar})$

SECTION D: Answer any two questions. Each carries 8 marks.

- 30. Describe Stern-Gerlach experiment for verification of space quantisation.
- 31. Explain Bohr's theory of Hydrogen atom and discuss the spectral series.
- 32. Obtain the eigen values, normalized eigen functions and probability densities of a particle confined in a one-dimensional rectangular box with infinitely hard walls.
- 33. Describe Davisson and Germer experiment for the study of diffraction of electrons and show that the results of this experiment are closely in agreement with de Broglie wavelength of electrons.