

Reg.No.	•••••
---------	-------

Name:....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022 (Regular/Improvement/Supplementary)

MATHEMATICS GMAT5B09T: LINEAR PROGRAMMING

Time: 2 Hours

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries 2 marks. (Ceiling 20 Marks)

- 1. Write the general statement of a canonical maximization LPP.
- 2. Define a convex set in \mathbb{R}^n . Give an example.
- 3. Write the canonical slack maximization problem represented by the following tableau

$$x_1$$
 x_2 -1

 -2 -5 -4 $= -t_1$
 1 1 7 $= -t_2$
 -36 0 $= f$

4. Pivot on the element 4 for the following tableau.

$$x_1$$
 x_2 -1

 x_1 x_2 -1

 x_2 x_3 x_4 x_5 x_6 x_7 x_7 x_8 x_8 x_8 x_9 $x_$

- 5. When we can say that a canonical slack minimization tableau is basic feasible?
- 6. State duality theorem.
- 7. Write the matrix form of a canonical maximization LPP.
- 8. Write the dual of the following maximization LPP.

Maximize
$$f(x, y, z) = 2x - 3y + 5z$$

subject to $x+y+z \le 5$
 $5x-2y \ge 6$
 $2x+3y-4z \ge -1$
 $x, y, z \ge 0$

9. Explain the term "complementary slackness".

10. Construct the Tucker tableau for the following noncanonical LPP.

Minimize
$$g(x, y, z) = x+2y+3z$$

subject to $x + y+z \ge 1$
 $2y+z = 1$
 $x+z \ge 1$
 $x, z \ge 0$

- 11. Define a basic feasible solution of a balanced transportation problem.
- 12. Define a cycle in a transportation tableau. Give an example.

SECTION B: Answer the following questions. Each carries 5 marks. (Ceiling 30 Marks)

13. Solve the following LPP by graphical method.

Maximize
$$f(x, y) = x+ y$$

subject to $x-y \le 3$
 $2x+y \le 12$
 $0 \le x \le 4$
 $0 \le y \le 6$

14. Solve the following canonical maximization LPP

Maximize
$$f(x, y, z) = x + y + z$$

subject to $2x+y+2z \le 2$
 $4x+2y+z \le 2$
 $x, y, z \ge 0$

15. Reduce the following maximum tableau to a maximum basic feasible tableau.

$$x_1$$
 x_2 -1

-1 -2 -3 = -t₁

1 1 3 = -t₂

1 1 2 = -t₃

-2 4 0 = f

16. Solve the following noncanonical LPP.

Minimize
$$g(x, y, z) = 3x + y + 2z$$
subject to
$$x + 2y + 3z \ge 24$$

$$2x + 4y + 3z = 36$$

$$y, z \ge 0$$

17. State and prove duality equation.

18. Apply Vogel's Advanced start method to the following transportation problem.

7	2	4	10
10	5	9	20
7	3	5	30
20	10	30	

19. Solve the following five persons -five jobs assignment problem where P_i 's denote persons and J_i 's denote jobs.

	J_1	J_2	J_3	J_4	J_5
\mathbf{P}_1	8	4	2	6	1
P ₂	0	9	5	5	4
P ₃	3	8	9	2	6
P ₄	4	3	1	0	3
P ₅	9	5	8	9	5

SECTION C: Answer any one question. Each carries 10 marks.

20. Solve the following minimization linear programming problem.

Minimize
$$f(x, y, z) = 3x-y+z$$
subject to
$$4x-y \leq 8$$

$$8x+y+3z \geq 12$$

$$5x-6z \geq 13$$

$$x, y, z \geq 0$$

21. Solve the following balanced transportation problem.

	\mathbf{D}_1	D_2	D ₃	Supply
O ₁	50	30	220	1
O ₂	90	45	170	4
O ₃	250	200	50	4
Required	4	2	3	9