DE	DI	/8/1		nn	12
D ₅	\mathbf{D}		4	VU	J

(PAGES 2)

Reg.No	••••••	*****	*****	••••

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(Regular/Improvement/Supplementary)

MATHEMATICS GMAT5B07T: NUMERICAL ANALYSIS

Time: 2 Hours

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 20 Marks)

- 1. Write the procedure of Bisection technique.
- 2. Determine the number of iterations necessary to solve $f(x) = x^3 + 4x^2 10 = 0$ with accuracy 10^{-3} using $a_1 = 1$ and $b_1 = 2$.
- 3. If $f(x) = x^2 6$ and $p_0 = 1$. Use Newton's method to find p_2 .
- 4. Determine the linear Lagrange interpolating polynomial that passes through the point (2,4) and (5,1).
- 5. State Weierstrass approximation theorem.
- 6. Form the divided difference table for the following data.

x	f(x)	
-1	3	
0	-6	
3	39	
6	822	
7	1611	

- 7. Write the newton's forward and backward difference formula.
- 8. Approximate the integral $\int_0^1 x^2 e^{-x} dx$ using the Trapezoidal rule.
- 9. Define Lipschitz condition. Show that f(x, y) = t|y| satisfies a Lipschitz condition on the interval $D = \{(t, y) | 1 \le t \le 2 \text{ and } -3 \le y \le 4\}.$
- 10. Write the three point and five point formulas.
- 11. Using Euler's method, find y(0.1), y(0.2) and y(0.3) for the equation y' = -y with the condition y(0) = 1.
- 12. Write Taylor's formula.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 30 Marks)

- 13. Apply Newton's forward difference formula to find the value of f(0.25) if f(0.1) = -0.62049958, f(0.2) = -0.28398668, f(0.3) = 0.00660095, f(0.4) = 0.24842440
- 14. Use secant method to find a solution to x = cosx.
- 15. Find a real root, correct to three decimal places, of the equation $2x 3 = \cos x$, lying in the interval $\left[\frac{3}{2}, \frac{\pi}{2}\right]$.
- 16. Use R-K method second order formula to find y(0.1) and y(0.2) for y' = y x, y(0) = 2, correct to four decimal places.
- 17. Show that the initial value problem $y' = y t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5 is well posed on $D = \{(t,y) | 0 \le t \le 2 \text{ and } -\infty < y < \infty\}$.
- 18. Use Mid point rule to evaluate $\int_1^{1.6} \frac{2x}{x^2-4}$.
- 19. Approximate f''(1.3) with h = 0.1 of the equation $f(x) = 3xe^x \cos x$ for the following data:

x	1.20	1.29	1.30	1.31	1.40
f(x)	11.59006	13.78176	14.04276	14.30741	16.86187

SECTION C: Answer any one question. Each carries ten marks.

- 20. Apply Taylor's method of orders (a) two and (b) four to the initial value $y' = e^{t-y}$, $0 \le t \le 1$, y(0) = 1 with h = 0.5.
- 21. Using the nodes $x_0 = 2$, $x_1 = 2.75$ and $x_2 = 4$, Find the second Lagrange polynomial for $f(x) = \frac{1}{x}$ on [2,4]. Determine the error form for this polynomial and the maximum error when the polynomial is used to approximate f(x) for $x \in [2,4]$.

 $(1 \times 10 = 10 \text{ Marks})$