D5BMT2002

(3 Pages)

Name...... Reg.No.....

FIFTH SEMESTER DEGREE EXAMINATION, NOVEMBER 2022 (Regular/Improvement/Supplementary) MATHEMATICS GMAT5B06T - REAL ANALYSIS

Time: 2 $\frac{1}{2}Hours$

Maximum: 80 Marks

SECTION A: Answer the following questions. Each carries 2 marks
(Ceiling 25 Marks)

- 1. If $a \in \mathbb{R}$, then prove that a.0 = 0.
- **2.** If $a, b \in \mathbb{R}$, then prove that -(a/b) = ((-a))/b = (-a)/b if $b \neq 0$.
- 3. Write the set $\{x \in \mathbb{R} : |x-1| > |x-3|\}$
- 4. Define the different types of bounded intervals in \mathbb{R} .
- 5. Define the m-tail of a sequence. Explain with an example.
- **6. Show that** $\lim_{n \to 1} (\frac{2n}{n+1}) = 2$
- 7. Give an example for a sequence which is not monotone but ultimately monotone.
- 8. Prove that a bounded sequence (x_n) is convergent if and only if $\lim \sup (x_n) = \lim \inf (x_n)$.
- 9. Define a contractive sequence. Give an example.
- 10. Show that the sequence $(\sqrt{n+1})$ is properly divergent.
- 11. Define neighbourhood of a point. Give any neighbourhood of -1 in real line.

- 12. Prove that the set [0,1] is not open.
- 13. Define Cantor set.
- 14. If $A \subset \mathbb{N}$, then prove that A is countable.
- 15. Give an example of a set which is neither open nor closed.

SECTION B: Answer the following questions. Each carries 5 marks (Ceiling 35 Marks)

- 16. Prove that the set $E = \{2n : n \in \mathbb{N}\}$ of even natural number is denumerable.
- 17. Find all $x \in \mathbb{R}$ that satisfy the equation |x+1| + |x-2| = 7.
- 18. Show that $\lim(\sqrt{n+1} \sqrt{n}) = 0$
- 19. If $X=(x_n)$ and $Y=(y_n)$ are convergent sequences of real numbers and if $x_n \leq y_n$ for all $n \in \mathbb{N}$, then $\lim (x_n) \leq \lim (y_n)$.
- 20. State and prove Monotone subsequence theorem.
- 21. Show that a monotone sequence of real numbers is properly divergent if and only if it is unbounded.
- 22. Let (x_n) be a sequence of nonnegative real numbers. Then show that the series $\sum x_n$ converges if and only if the sequence $S = (s_k)$ of partial sums is bounded.
- 23. A subset of \mathbb{R} is closed if and only if it contains all of its cluster points.

SECTION C: Answer any 2 questions. Each carries 10 marks.

24. (a) Prove that there does not exist a rational number r such that $r^2=2$

- (b) If $a \in \mathbb{R}$ is such that $0 \le a < \epsilon$ for every $\epsilon > 0$, then prove that a = 0.
- (c) State and prove Bernoulli's in equality.
- 25. (a) State and prove Archimedean property.
 - (b) If $S = \{1/n : n \in N\}$, then prove that inf S = 0.
 - (c) If t > 0, then prove that there exists $n_t \in \mathbb{N}$ such that $0 < 1/n_t < t$.
- 26. Discuss the convergence of a Geometric series.
- 27. Give any two characterizations of closed sets and prove the results.

 $(2x \ 10 = 20 \ Marks)$