D5BMT2001

(2 Pages)

Name...... Reg.No....

FIFTH SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2022 (Regular/Improvement/Supplementary) MATHEMATICS GMAT5B05T - ABSTRACT ALGEBRA

Time: $2\frac{1}{2}Hours$

Maximum: 80 Marks

SECTION A: Answer the following questions. Each carries 2 marks (Ceiling 25 Marks)

- 1. Find all divisors of zero in \mathbb{Z}_{14} .
- **2.** Compute (1, 4, 2, 5)(2, 6, 3).
- 3. Show by an example that the product of two cycles need not be a cycle.
- 4. If G is a nonempty set with an associative binary operation in which the equations ax = b and xa = b have a unique solutions for all $a, b \in G$, then prove that G is a group.
- 5. Let G be an abelian group. Show that the set of all elements of G of finite order forms a subgroup of G.
- 6. If F be a field, then show that $GL_n(F)$ is a group under matrix multiplication.
- 7. Prove that any group with three elements must be isomorphic to \mathbb{Z}_3 .
- 8. Let $G = \langle a \rangle$ be a finite cyclic group of order n. If $m \in \mathbb{Z}$, then prove that $\langle a^m \rangle = \langle a^d \rangle$ where d = gcd(m, n).
- 9. Find the order of (1,2)(2,3)(3,4).
- 10. Let $\phi: G_1 \to G_2$ be a group homomorphism. Prove that for any integer n and any $a \in G_1$, $\phi(a^n) = \phi(a)^n$ for all $a \in G_1$.

(P.T.O.)

- 11. Let N be a normal subgroup of G. Prove that the natural projection $\pi:G\to G/N$ defined by $\pi(x)=xN$, for all $x\in G$, is a group homomorphism, and $ker(\pi)=N$.
- 12. If R is a commutative ring, then show that a.0 = 0 for all $a \in R$.
- 13. Show that $Aut(\mathbb{Z}_n) \cong \mathbb{Z}_n^{\times}$.
- 14. If f(x) and g(x) are nonzero polynomials in F[x], then prove that their product f(x)g(x) is nonzero and $\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x))$.
- 15. For any element $c \in F$, and any positive integer k, show that $x c \mid x^k c^k$.

SECTION B: Answer the following questions. Each carries 5 marks (Ceiling 35 Marks)

- 16. Let n be a positive integer. Then show that congruence class $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if (a,n)=1.
- 17. Prove that he groups \mathbb{R} (under addition) and \mathbb{R}^+ (under multiplication) are isomorphic.
- **18.** Find HK in \mathbb{Z}_{16}^{\times} if H = <[3] > and K = <[5] >.
- 19. Let G be a group, and let $a \in G$. Then prove that the set < a > is a subgroup of G. Also prove that if K is any subgroup of G such that $a \in K$, then $< a > \subseteq K$.
- 20. If N is a normal subgroup of G, then prove that the set of left cosets of N forms a group under the coset multiplication given by aNbN = abN for all $a, b \in G$.
- 21. Write down the formulas for all homomorphisms from \mathbb{Z} onto \mathbb{Z}_{12} .
- 22. Find the subgroup diagram of S_3 .

23. Let R be a commutative ring such that $a^2=a$ for all $a\in R$. Show that a+a=0 for all $a\in R$.

SECTION C: Answer any 2 questions. Each carries 10 marks.

- 24. State and prove the fundamental theorem on equivalence relations.
- 25. Show that the smallest order of a nonabelian group is 6.
- 26. Define the Euler ϕ function. State and prove a formula for $\phi(n)$.
- 27. Let G be a group with normal subgroups H, K such that HK = G and $H \cap K = \{e\}$. Show that $H \times K \cong G$.

 $(2 \times 10 = 20 \text{ Marks})$