Time: 3 Hours

-	N.T.			
Reg.	No	*******	****	••••••

Name:

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(Supplementary – 2018 Admission)

MATHEMATICS

AMAT5B08T: DIFFERENTIAL EQUATIONS

PART A: Answer all the questions. Each carries 1 mark.

Maximum Marks: 120

- 1. Verify that $y(t) = \cosh t$ is the solution of the differential equation y'' y = 0.
- 2. Find the order and degree of the differential equation $(y^2 + x) \frac{d^2y}{dx^2} + 2y \left(\frac{dy}{dx}\right)^3 = 7$.
- 3. Find the integrating factor of $dx + \left(\frac{x}{y} \sin y\right) dy$.
- 4. Without solving find an interval in which the initial value problem $(4 t^2)y' + 2ty = 3t^2$, y(3) = 0, y'(-3) = 1 has a unique solution.
- 5. Find the general solution of y'' + 5y' + 6y = 0.
- 6. Find the Wronskian of the pair of functions $\cos t$, $\sin t$.
- 7. State the Abel's theorem.
- 8. Check whether $\frac{dy}{dx} = -\frac{3x+4y}{4x+8y}$ is exact.
- 9. Find $L[e^{3t} + \sin 4t]$.
- 10. Find $L^{-1} \left[\frac{e^{-2s}}{s^2} \right]$.
- 11. Check whether the function $f(x) = |x|^3$ is even or odd or neither.
- 12. Write the one-dimensional heat equation.

 $(12 \times 1 = 12 \text{ Marks})$

PART B: Answer any ten questions. Each carries 4 marks.

- 13. Solve $\frac{dy}{dt} 2y = 4 t$.
- 14. Solve the initial value problem $y' + (\tan t)y = \sin t$, $y(\pi) = 0$.
- 15. Find the general solution of the differential equation $2x + y^2 + 2xyy' = 0$..
- 16. Show that the separable differential equation M(x)dx + N(y)dy = 0 is exact.
- 17. Solve $xy' = e^{-xy} y$.
- 18. Verify Abel's theorem, for the solutions $y_1(t) = t^{1/2}$ and $y_2(t) = t^{-1}$ of the differential equation $2t^2y'' + 3ty' y = 0, t > 0$.
- 19. Determine whether the functions $f(x) = \cos x$, $g(x) = \sin x + \cos x$ are linearly independent.
- 20. Find a particular solution of $y'' 2y' 3y = 2e^{2t}$.
- 21. Prove that the linear combinations of solutions of a second order linear differential equation is also a solution of the same differential equation.
- 22. Prove that $L[e^{at} f(t)] = F(s-a), s-a > k$ where L[f(t)] = F(s).
- 23. Find the Laplace transform of tet sin 2t.
- 24. Find the inverse Laplace transform of $\frac{4e^{-\pi s}}{s^2+9}$.
- 25. Find the Fourier coefficient a_0 in the Fourier expansion of the function $f(x) = x, -1 \le x < 1$.
- 26. Find the solution of the partial differential equation $u_x + u_y = (x + y)u$.

 $(10 \times 4 = 40 \text{ Marks})$ (PTO)

PART C: Answer any six questions. Each carries 7 marks.

- 27. Solve the initial value problem $\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y-1)}$, y(0) = -1, and determine the interval in which the solution exists.
- 28. Solve the initial value problem y' = 2t(1 + y), y(0) = 0 by the method of successive approximation.
- 29. Solve $(xy^3 + y)dx + 2(x^2y^2 + x + y^4) dy = 0$.
- 30. Find the solution of $y'' 3y' 4y = 3e^{2t}$.
- 31. Find the general solution of $y'' + y = \csc t$.
- 32. Using the method of reduction of order solve the differential equation $t^2y'' 5t y' + 9y = 0$, t > 0, given that $y = t^3$ is a solution.
- 33. Using the method of convolution, find the inverse transform of $\frac{s^2}{(s^2+4)(s^2+9)}$.
- 34. Find the Fourier sine series for the function $f(x) = \begin{cases} 1-x, & 0 < x \le 1 \\ 0, & 1 < x \le 2 \end{cases}$, with period 4.
- 35. Find the deflection u(x, t) of the string of length $L = \pi$, when $a^2 = 1$, the initial velocity is and the initial deflection is $k[\sin x (1/2)\sin 2x]$.

 $(6 \times 7 = 42 \text{ Marks})$

PART D: Answer any two questions. Each carries 13 marks.

- 36. Find the solution of $y'' 3y' 4y = 3e^{2t} + 2\sin t 8e^t\cos 2t$.
- 37. Using Laplace transforms, solve $y'' + 2y' 3y = e^{-t} + \delta\left(t \frac{1}{2}\right)$.
- 38. Find the Fourier series expansion of the function f(x), which is periodic with period 2π , where $f(x) = \begin{cases} -x + 1, & -\pi < x \le 0 \\ x + 1, & 0 < x \le \pi \end{cases}$. Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$.

 $(2 \times 13 = 26 \text{ Marks})$