(PAGES 2)

Reg.	No

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022 (Supplementary – 2018 Admission)

MATHEMATICS AMAT5B07T: BASIC MATHEMATICAL ANALYSIS

Time: 3 Hours Maximum Marks: 120

PART A: Answer all the questions. Each question carries 1 mark.

- 1. Give an example of anbijective function.
- 2. Give an example of a set which has supremum and infimum.
- 3. If u and $b \neq 0$ are elements in \mathbb{R} with $u \cdot b = b$, then prove that u = 1.
- 4. Illustrate set which has infimum 3.
- 5. Write an example of an infinite open interval.
- 6. Give an example of a divergent sequence and write the 2 tail of the sequence.
- 7. Give an example of two divergent sequences X, Y such that their sum X + Y converges.
- 8. Explain a decreasing sequence with an example.
- 9. Give an example of a sequence and write a monotone subsequence of it.
- 10. Write an example of a bounded sequence that is not a Cauchy sequence.
- 11. Give an example of a set which is both open and closed in R.
- 12. Show that $(1+z)^2 = 1 + 2z + z^2$, where $z \in \mathbb{C}$.

 $(12 \times 1 = 12 \text{ Marks})$

PART B: Answer any ten questions. Each question carries 4 marks.

- 13. If a set S is countable and $T \subseteq S$, then prove that T is countable.
- 14. If $a, b \in \mathbb{R}$ and ab > 0, then prove that a > 0 and b > 0.
- 15. Let $S_4 := \{1 (-1)^n / n \in \mathbb{N}\}$. Find inf S_4 .
 - 5. Let b < 0, and let $bS := \{bs: s \in S\}$. Prove that Inf $(bS) = b \sup S$.
- 17. If $S \subseteq \mathbb{R}$ is nonempty, show that S is bounded if and only if and only if there exists a closed bounded interval I such that $S \subseteq I$.
- 18. If a > 0, then show that $\lim_{n \to \infty} \left(\frac{1}{1 + na} \right) = 0$.
- 19. Find the limits of the sequence $\lim_{n \to \infty} \left(\frac{\sqrt{n}-1}{\sqrt{n}+1} \right)$.
- 20. Establish either the convergence or divergence of the sequence $X = (x_n)$, where $x_n := \frac{(-1)^n n}{n+1}$
- 21. State monotone convergence theorem.
- 22. Using divergence criteria prove that the sequence $X := ((-1^n))$ is divergent.
- 23. Establish the convergence and find the limit of the sequence $\left(\left(1 + \frac{1}{2n}\right)^2\right)$,
- 24. Let (x_n) and (y_n) be two sequence of real numbers and suppose that $x_n \le y_n$ for all $n \in N$ If $\lim(x_n) = +\infty$, then prove that $\lim(y_n) = +\infty$.
- 25. Show that the set I := [0,1] is not open
- 26. Find all the roots in rectangular coordinates, exhibit $z = (-8 8\sqrt{3}i)^{1/4}$ as vertices of certain squares, and point out which is the principal root.

 $(10 \times 4 = 40 \text{ Marks})$ (PTO)

PART C: Answer any SIX questions. Each carries 7 marks

- 27. a) State and prove the principle of mathematical induction.
 - b) Using Mathematical induction prove that the inequality $2^n \le (n+1)!$
- 28. a) Show that if $a, b \in \mathbb{R}$, and $a \neq b$, then there exist ε -neighborhoods U of a and V of b such that $U \cap V = \emptyset$.
 - b) Prove that an upper bound of a nonempty set S in R is the supremum of S if and only if for every $\varepsilon > 0$ there exists an $s_{\varepsilon} \in S$ such that $u \varepsilon < s_{\varepsilon}$.
- 29. a) Let A and B be bounded nonempty subsets of R, and let $A + B := \{a + b : a \in A, b \in B\}$. Prove that $\inf(A + B) = \inf A + \inf B$.
 - b) State and prove Archimedean property.
- 30. a) Let $X = (x_n : n \in N)$ be a sequence of real numbers and let $m \in N$. Then show that the m-tail $X_m = (x_{m+n} : n \in N)$ of X converges if and only if X converges. In this case, also prove that $\lim X_m = \lim X$.
 - b) Show that $\lim_{n \to 1} \left(\frac{3n+2}{n+1} \right) = 3$.
- 31. Let $X = (x_n)$ be a sequence of real numbers that converges to x and suppose that $\dot{x}_n \ge 0$. Then show that the sequence $(\sqrt{x_n})$ of positive square roots converges and $\lim(\sqrt{x_n}) = \sqrt{x}$.
- 32. If $X = (x_n)$ is a bounded increasing sequence, then prove that $\lim(x_n) = \sup\{x_n : n \in \mathbb{N}\}$.
- 33. If $X = (x_n)$ is a sequence of real numbers then prove that there is a subsequence of X that is monotone.
- 34. a) Show that the intersection of an arbitrary collection of closed sets in \mathbb{R} is closed.
 - b) Show that the set Q of rational numbers is neither open nor closed.
- 35. a) Show that any point z_0 of a domain is an accumulation points of that domain.
 - b) Prove or disprove that $o \le \arg z \le \pi/4(z \ne 0)$ is a domain.
 - c) Give an example of a set whose boundary is the set itself and prove your claim.

 $(6 \times 7 = 42 \text{ Marks})$

PART D: Answer any two questions. Each question carries 13 marks.

- 36. a) Prove that there does not exist a rational number r such that $r^2 = 2$.
 - b) If $a \in \mathbb{R}$ is such that $o \le a < \varepsilon$ for every $\varepsilon > 0$, then prove that a = 0.
 - c) State and prove Bernoulli's in equality.
- 37. a) State and prove nested intervals property
 - b) If $I_n := [a_n, b_n], n \in \mathbb{N}$, is a nested sequence of closed bounded intervals such that the lengths $b_n a_n$ of I_n satisfy $\inf\{b_n a_n : n \in \mathbb{N}\} = 0$. Then prove that the number ξ contained in I_n for all $n \in \mathbb{N}$ is unique.
- 38. State and prove Cauchy convergence criterion for the sequences.

 $(2 \times 13 = 26 \text{ Marks})$