(PAGES 2)

| Reg. | No. | • • • | • • | • | • |  |  | • |
|------|-----|-------|-----|---|---|--|--|---|
|      |     |       |     |   |   |  |  |   |

# Name: .....

#### FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(Supplementary – 2018 Admission)

#### **MATHEMATICS**

#### **AMAT5B06T: ABSTRACT ALGEBRA**

Time: 3 Hours

Maximum marks: 120

#### PART A: Answer all the questions. Each carries one mark

- 1. Give an example of a cyclic group having only one generator.
- 2. Compute the product (20)(-8)in  $\mathbb{Z}_{26}$ .
- 3. Give an example of group of order 4.

Find 
$$\tau \sigma$$
. If  $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$  and  $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$ 

- 5. Compute the product of the cycles (1,4,5)(7,8)(2,5,7) that are permutations of {1,2,3,4,5,6,7,8}
- 6. What is the order of the cycle (1,4,5,7) in  $S_8$ .
- 7. Write all cosets of the subgroup 4Z of 2Z.
- 8. Give an example of homomorphism whose kernal contains only 2 elements.
- 9. How many group homomorphisms are there of Zonto Z?
- 10. Write cyclic sub group of Z generated by 3.
- 11. Write an integral domain which is not a field
- 12. Write the field of quotients of R.

 $(12 \times 1 = 12 \text{ Marks})$ 

#### PART B: Answer any ten questions. Each question carries 4 marks

- 13. Prove or disprove that  $\phi: \langle \mathbb{Q}, \cdot \rangle \to \langle \mathbb{Q}, \cdot \rangle$  defined by  $\phi(x) = x^2$  for  $x \in \mathbb{Q}$ . is an isomorphism
- 4. Prove or disprove all  $n \times n$  diagonal matrices under matrix multiplication is a group.
- 15. Show that every group G with identity e and such that x \* x = e for all  $x \in G$  is abelian.
- 16. Define generater of a group and give an example.
- 17. Find all orders of subgroups of the group  $\mathbb{Z}_6$ .
- 18. Prove or disprove that the function  $f_2: \mathbb{R} \to \mathbb{R}$  defined by  $f_2(x) = x^2$  is a permutation of  $\mathbb{R}$ .
- 19. Find the number of elements in the set  $\{\sigma \in S_4 | \sigma(3) = 3\}$
- 20. Show that any permutation of a finite set of at least two elements is a product of transpositions.
- 21. Show that if H is a subgroup of index 2 in a finite group G, then every left coset of H is also a right coset of H.
- 22. Let  $\phi: G \to G'$  be a group homomorphism. Show that if |G| is finite, then  $|\phi|[G]|$  is finite and is a divisor of |G|
- 23. Show that an intersection of subrings of a ring R is again a subring of R.
- 24. Prove or disprove that  $n\mathbb{Z}$  has zero divisors if n is not prime.
- 25. If p is a prime, then show that  $\mathbb{Z}_p$ , has no divisors of 0.
- 26. Show that any two fields of quotients of an integral domain D are isomorphic.

### PART C: Answer any six questions. Each carries 7 marks

- 27.(a) If m is a positive integer and n is any integer, then prove that there exist unique integers q and r such that n = mq + r and  $0 \le r < m$ .
  - (b) Find the greatest common divisor of the two integers 32 and 24.
- 28. (a) Show that if G is a group with binary operation \*, and if a and b are any elements of G, then the linear equations a \* x = b and y \* a = b have unique solutions x and y in G.
  - (b) Let n be a positive integer and let  $n \mathbb{Z} = \{nm | m \in \mathbb{Z}\}$ . Show that  $(n\mathbb{Z}, +) \simeq (\mathbb{Z}, +)$ .
- 29. (a) Let  $2\mathbb{Z} = \{2n | n \in \mathbb{Z}\}$ , so that  $2\mathbb{Z}$  is the set of all even integers, positive, negative, and zero. Prove or disprove that  $(\mathbb{Z}, +)$  is isomorphic to  $(2\mathbb{Z}, +)$ , where + is the usual addition.
- (b) Prove or disprove that  $\phi: \langle \mathbb{Q}, + \rangle \to \langle \mathbb{Q}, + \rangle$  defined by  $\phi(x) = x/2$  for  $x \in \mathbb{Q}$ . is an isomorphism 30.(a) If R is a ring with additive identity 0, then for any  $a, b \in R$  We have
  - 1.0a = a0 = 0,
  - 2. a(-b) = (-a)b = -(ab)
  - (b) Prove or disprove every field is also a ring.
- 31. (a) Show that every field F is an integral domain.
  - (b) Let R be a ring with unity. If  $n \cdot 1 \neq 0$  for all  $n \in \mathbb{Z}^+$  then prove that R has characteristic 0. If  $n \cdot 1 = 0$  for some  $n \in \mathbb{Z}^+$ , then also prove that the smallest such integer n is the characteristic of R.
- 32. Let A be a nonempty set, and let  $S_A$  be the collection of all permutations of A. Then prove that  $S_A$  is a group under permutation multiplication
- 33.Let H be a subgroup of a finite group G, Then the order of H is a divisor of the order of G. Prove or disprove the converse
- 34.Let  $\phi$  be a homomorphism of a group G into a group G'. Show that  $\phi$  preserves the identity element, inverses, and subgroups.
- 35.(a) Let G be a group and let  $a \in G$ . Then show that
  - $H = \{a^n | n \in z\}$  is a subgroup of G and is the smallest subgroup of G that contains a.
  - (b) Define generator of a group and give an example.

(6 x7 = 42 Marks)

## PART D: Answer any two questions. Each question carries 13 marks

- 36. (a) Show that a subset H of a group G is a subgroup of G if and only if
  - 1. H is closed under the binary operation of G
  - 2. the identity element e of G is in H
  - 3. for all  $a \in H$  it is true that  $a^{-1} \in H$  also
  - (b) Show that if H and K are subgroups of an abelian group G, then  $\{hk | h \in H \text{ and } k \in K\}$  is a subgroup of G.
- 37. State and prove Cayley's Theorem.
- 38. (a) Suppose H and K are subgroups of a group G such that  $K \le H \le G$ , and suppose (H:K) and (G:H) are both finite. Then prove that (G:K) is finite, and (G:K) = (G:H)(H:K).
  - (b) Let H be a subgroup of a group G such that  $g^{-1}hg \in H$  for all  $g \in G$  and all  $h \in H$ . Show that every left coset gH is the same as the right coset Hg.