| D5BEM2004 | (2 Pages) | Name   |
|-----------|-----------|--------|
|           |           | Reg.No |

## FIFTH SEMESTER DEGREE EXAMINATION, NOVEMBER 2022 ECONOMICS AND MATHEMATICS (DOUBLE MAIN) GDMT5B07T - REAL ANALYSIS

Time: 2 Hours Maximum: 60 Marks

SECTION A: Answer the following questions. Each carries 2 marks (Ceiling 20 Marks)

- 1. Define denumerable sets. Give an example.
- 2. If z and a are elements in  $\mathbb{R}$  with z + a = a, then prove that z = 0.
- 3. If  $a \neq 0$  and b in  $\mathbb{R}$  are such that a.b = 1, then show that b = 1/a.
- **4.** If  $S = \{1/n 1/m : n, m \in \mathbb{N}\}$ , find inf S and sup S?
- 5. Define the different types of bounded intervals in  $\mathbb{R}$ .
- 6. Define a sequence of real numbers. Give an example.
- 7. Define the *m*-tail of a sequence. Explain with an example.
- **8. Show that**  $\lim (\frac{2n}{n+1}) = 2$
- 9. Give an example of a set which has neither a supremum nor an infimum.
- 10. State the divergence criteria for sequence of real numbers.
- 11. Prove that a bounded sequence  $(x_n)$  is convergent if and only if  $\lim \sup (x_n) = \lim \inf (x_n)$ .
- 12. Show that the sequence  $(\frac{1}{n})$  is a Cauchy sequence.

SECTION B: Answer the following questions. Each carries 5 marks (Ceiling 30 Marks)

- 13. If  $A_m$  is a countable set for each  $m \in \mathbb{N}$ , then prove that the union  $A = \bigcup_{m=1}^{\infty} A_m$  is countable.
- 14. Let S be a non empty subset of  $\mathbb R$  that is bounded above, and let a be any number in  $\mathbb R$ . Define the set  $a+S=\{a+s:s\in S\}$ . Prove that  $sup(a+S)=a+sup\ S$ .
- 15. If  $\{I_n := [a_n, b_n], n \in \mathbb{N}\}$ , is a nested sequence of closed, bounded intervals such that the lengths  $b_n a_n$  of  $I_n$  satisfy  $\inf\{b_n a_n : n \in \mathbb{N}\} = 0$ , then show that the number  $\xi$  contained in  $I_n$  for all  $n \in \mathbb{N}$  is unique.
- 16. If a sequence  $X = (x_n)$  of real numbers converges to a real number x, then prove that any subsequence  $X' = (x_{n_k})$  of X also converges to x.
- 17. Show that the sequnce  $(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{n})$  is divergent.
- 18. Let  $(x_n)$  be a sequence of non negative real numbers. Then show that the series  $\Sigma x_n$  converges if and only if the sequence  $S = (s_k)$  of partial sums is bounded.
- 19. Calculate the value of  $\sum_{n=2}^{\infty} (\frac{2}{7})^n$ .

SECTION C: Answer any 1 question. Each carries 10 marks.

- 20. (a) Prove that there does not exist a rational number r such that  $r^2=2$ .
  - (b) If  $a \in \mathbb{R}$  is such that  $0 \le a < \epsilon$  for every  $\epsilon > 0$ , then prove that a = 0.
  - (c) State and prove Bernoulli's in equality.
- 21. Find all values of x that satisfy the following equations:

(a) 
$$|x+1| = |2x-1|$$
, (b)  $2x-1 = |x-5|$ .