D5BEM2003

Reg.No	
Nama	

FIFTH SEMESTER B.Sc DEGREE EXAMINATION, NOVEMBER 2022 ECONOMICS & MATHEMATICS (DOUBLE MAIN) GDMT5B06T-LINEAR ALGEBRA

Time: 2 Hours

Maximum: 60 Marks

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 20 Marks)

- 1. Find the rank of $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 5 \\ 2 & 4 & 8 \end{bmatrix}$
- 2. Define a singular matrix. Give example.
- 3. Find the characteristic equation of $\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$
- 4. State Cayley Hamilton Theorem.
- 5. Find the inverse of the matrix $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ using Cayley Hamilton Theorem.
- 6. Give example of a vector space over R.
- 7. Find a basis of R^3 over R.
- 8. Give examples of 2 linearly independent vectors in \mathbb{R}^2 . Justify.
- 9. Give example of a Linear map: $R^2 \rightarrow R^3$.
- 10. Find the null space of T: $R^2 \rightarrow R$ defined by T(x,y) = x.
- 11. Find the matrix of T: $R^2 \rightarrow R^2$, T(x,y) = (x+y, x-y).
- 12. Check whether T: $R \rightarrow R^2$ defined by T(x) = (x, 2x) is invertible.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 30 Marks)

- 13. Reduce the matrix $A = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$ to its normal form and hence determine the rank.
- 14. Using matrix method, solve:

$$2x - y + 3z = 9$$
$$x + y + z = 6$$

$$x-y+z=2$$

(P.T.O.)

- 15. Show that if λ the characteristic root of a non-singular matrix A, then λ^{-1} is a characteristic root of A^{-1} .
- 16. Suppose that U and W are subspaces of V. Then show that $V = U \oplus W$ if and only if V = U + W and $U \cap W = \{0\}$.
- 17. State and prove Linear Dependence Lemma.
- 18. Let $T \in L(V, W)$. Then show that T is injective if and only if null T = 0.
- 19. Suppose $T \in L(V, W)$ is injective and (v_1, v_2, \dots, v_n) is linearly independent in V. Show that $(Tv_1, Tv_2, \dots, Tv_n)$ is linearly independent in W.

SECTION C: Answer any one question. Each carries 10 marks.

20. Determine the characteristic roots and basis of each of the associated invariant vector

spaces of
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

21. State and prove Rank-Nullity Theorem.

 $(1 \times 10 = 10 \text{ Marks})$