Time: 2 Hours

Reg. No.....

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2025

(Regular/Improvement/Supplementary)

MATHEMATICS: COMPLEMENTARY COURSE FOR PHYSICS, CHEMISTRY &

COMPUTER SCIENCE

GMAT4C04T: MATHEMATICS 4

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 20 marks)

- 1. State The Continuous Function Theorem for Sequences.
- 2. Find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n_5}}{4^n}$.
- 3. Investigate the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{10^n}$.
- 4. Find the least upper bound of the sequence $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots$ if it exists.
- 5. Find the Maclaurin series for $f(x) = \sin 3x$.
- 6. Write the formula in the classical Runge-Kutta method of fourth order while solving the initial value problem y' = f(x, y), y(0) = 1.
- 7. Find the Laplace Transform of sin 2*tcos*3*t*.
- 8. Find the Inverse Laplace Transform of $\frac{5s+1}{s^2-25}$.
- 9. Verify that $u = x^2 + t^2$ is a solution of the One dimensional wave equation.
- 10. Find $L(e^{-2t}u(t-3))$.
- 11. Estimate $\int_{1}^{2} x \, dx$ using Simpson's rule with n = 4.
- 12. Find the radius of convergence and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{3^n x^n}{n!}$.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 30 marks)

- 13. State the n^{th} Root Test for the convergence of a series of positive terms. Test for convergence of the series $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$.
- 14. Test for convergence of the sequence, $\{a_n\}$ where $a_n = \frac{n+(-1)^n}{n}$. If convergent, find the limit.
- 15. Find the Taylor series and Taylor polynomials generated by $f(x) = \cos x$ at x = 0.
- 16. Find the Inverse Laplace Transform, h(t) of $H(s) = \frac{1}{s^2(s^2+a^2)}$ using convolution.
- 17. Solve the initial value problem y' = x + y, y(0) = 0 by applying Picard's Iteration.
- 18. Find the Fourier series expansion of $f(x) = x^2$ in the interval $-\pi < x < \pi$.
- 19. Find the Laplace Transform of $t^2 sin 3t$.

SECTION C: Answer any *one* question. The question carries *ten* marks.

20. Solve the initial value problem $y'' + 9y = 10e^{-t}$, y(0) = 0, y'(0) = 0. 21. Find the Fourier series expansion of $f(x) = \begin{cases} x & if -\pi < x < 0.\\ \pi - x & if 0 < x < \pi \end{cases}$

in the interval $-\pi < x < \pi$.

 $(1 \times 10 = 10 \text{ Marks})$