Name:

Maximum Marks: 80

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2025 (Regular/Improvement/Supplementary)

COMPUTER SCIENCE & MATHEMATICS (DOUBLE MAIN)

GDMA4A02T: THEORY OF EQUATIONS AND COMPLEX NUMBERS

Time: 2 ¹/₂ Hours

SECTION A: Answer the following questions. Each carries *two* marks.

(Ceiling 25 marks)

- 1. If a and b are different and f(x) is separately divisible by x a and x b show that f(x) is divisible by (x a)(x b).
- 2. Expand $x^3 1$ in powers of x 1.
- 3. State the fundamental theorem of algebra.
- 4. What is the relation between p and q if the equation $x^3 + px + q = 0$ has a multiple root.
- 5. Factorize $x^4 + 4$ into linear factors.
- 6. Solve the cubic equation $2x^3 x^2 18x + 9 = 0$ whose roots are *a*, *b*, and *c* and a + b = 0.
- 7. Find the upper limit of the positive roots of the equation $x^4 7x^3 + 10x^2 30 = 0$.
- 8. Show that the equation $x^3 7x + 7 = 0$ has a real roots within the interval [-4, -3].
- 9. Separate the roots of the equation $3x^4 74 6x^2 + 12x 1 = 0$.
- 10. State Descarte's rule of signs.
- 11. If α , β and γ are the roots of the equation $x^3 7x + 7 = 0$, find the equation whose roots are $\alpha^2 + \beta^2$; $\beta^2 + \gamma^2$; $\alpha^2 + \gamma^2$.
- 12. Describe the set of points z in the complex plane that satisfy |z| = |z i|.
- 13. Use De Moivre's formula find trigonometric identities for $cos 2\theta$ and $sin 2\theta$.
- 14. Find all solutions of the equation $z^4 + 1 = 0$.
- 15. Find the image of the square S with vertices at 1 + i, 2 + i, 2 + 2i, and 1 + 2iunder the linear mapping T(z) = z + 2 - i.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 35 marks)

- 16. Without actual division show that $2x^4 7x^3 2x^2 + 13x + 16$ is divisible by $x^2 5x + 6$.
- 17. Using Horner's method expand $x^4 6x^3 + x^2 1$ in powers of x + 1.
- 18. Find the rational roots of the polynomial equation $3x^3 7x^2 5x + 2 = 0$.
- 19. Prove that the rational roots of the equation $x^n + a_1 x^{n-1} + \dots + a_n = 0$; with integer coefficients can be only integers.
- 20. Verify that the function $(x_1 + x_2)(x_1 + x_3)(x_2 + x_3)$ is symmetric and break them up into sigma functions.
- 21. Prove that between two consecutive roots c and d of f'(x) lies at most one root of f(x).
- 22. Find the natural domain and the range of the complex functions $f(z) = \frac{z+\bar{z}}{z-\bar{z}}$.
- 23. Find the image of the circle $|z z_0| = R$ under the mapping f(z) = iz 2 using parametrizations.

SECTION C: Answer any two questions. Each carries ten marks.

- 24. Explain the synthetic division procedure to find the quotient and remainder when dividing f(x) by (x c).
- 25. a) Find the highest common divisor of $x^4 6x^2 8x 3$ and $x^3 3x 2$.

b) Find an upper limit of the moduli of roots for the equation $x^3 - 6x^2 + 11x - 6 = 0$.

- 26. For what values of A has the equation $(x + 3)^3 A(x 1) = 0$ three real roots.
- 27. a) Find the image of the set S defined by $|z| \le 2$, $0 \le \arg(z) \le \pi/2$, under the mapping $w = z^3$.
 - b) Prove that for any two complex numbers z_1 and z_2 ,

$$arg(z_1z_2) = arg(z_1) + arg(z_2)$$
 and $arg(\frac{z_1}{z_2}) = arg(z_1) - arg(z_2)$.

 $(2 \times 10 = 20 \text{ Marks})$