(PAGES 4)

Name:

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2025

(Regular/Improvement/Supplementary)

HONOURS IN MATHEMATICS

GMAH4B18T: NUMERICAL COMPUTING

Time: 3 Hours

Maximum Marks: 80

Part A: Answer all the questions. Each carries one mark.

Choose the correct answer.

1. The iterative formula in Newton Raphson method is ______.

a)
$$x - \frac{f(x)}{f'(x)}$$

b) $x + \frac{f(x)}{f'(x)}$
c) $x - \frac{f'(x)}{f(x)}$
d) None of the above

2. Newton- Gregory Forward interpolation formula can be used ______.

- a) only for equally spaced intervals.
- b) only for unequally spaced intervals.
- c) for both equally and unequally spaced intervals.
- d) for unequally intervals.

If f(t, y) satisfies the Lipschitz conditions in y then the Lipschitz constant for f(t, y) = ysint, 0 ≤ t ≤ 1 is:

(a) L = 0 (b) L = 1 (c) L = 2 (d) L = 3

4. The approximate value of y(0.1) from $\frac{dy}{dx} = x^2y - 1$, $0 \le x \le 1$, y(0) = 1 is:

- (a) 0.900 (b) 1.001 (c) 0.802 (d) 0.994
- 5. Euler's method is Taylor's method of order _____.
 - (a) zero (b) one (c) two (d) three

Fill in the blanks.

- 6. In bisection method, for $f(x) = x^3 3x + 1$ on [1,2], $P_2 =$ _____
- 7. Using Newton Raphson formula for $f(x) = 2x^3 + 2x 6 = 0$, $P_0 = 1, P_2$.
- 8. If f(3) = 5, f(5) = 3, f(7) = 9, then $\Delta(f(3))$ is _____.
- 9. The Newton's divided difference formula is _____.
- 10. The maximum error occurred when using the backward-difference formula in numerical differentiation is _____.

(10 x 1 = 10 Marks)

Part B: Answer any eight questions. Each carries two marks.

- 11. Use the Bisection method to find P_3 for $f(x) = \sqrt{x} \cos x$ on [0, 1]
- 12. Describe the trapezoidal method.
- 13. Determine any fixed points of the function $g(x) = x^2 2$.
- 14. Let $f(x) = x^2 3x$ and $P_0 = 1$. Use Newton's method to find P_2 .
- 15. Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4) and (5, 1).
- 16. Use the forward-difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ using h = 0.01
- 17. For the following data, find f'(1.0).

x	f(x)	f'(x)
1.0	1.0000	
1.2	1.2625	
1.4	1.6595	

- 18. Calculate $\int_0^2 (x+1)^{-1} dx$ using Simpsos's rule.
- 19. Given $3\frac{dy}{dx} + 5y^2 = sinx$, y(0.3) = 5 and using a step size of h = 0.3, find the value of y(0.9) using Euler's method.
- 20. Write down the formula for the Modified Euler method.

(8 x 2 = 16 Marks)

Part C: Answer any six questions. Each carries four marks.

- 21. Use the Bisection method to find P_5 for $f(x) = x^3 7x^2 + 14x 6 = 0$ on [1, 3.2]
- 22. Find a root of $x^3 + 4x^2 10 = 0$, accurate to within 10^{-2} using fixed point method. Use $P_0 = 1$.
- 23. Let $f(x) = x^2 6$, with $P_0 = 3$ and $P_1 = 2$, find P_2 using
 - a) Secant method
 - b) Method of false position
 - c) Which of **a**) or **b**) is closer to $\sqrt{6}$.
- 24. Approximate f (0.65) using the following data and the Newton backward-difference formula:

x	0.0	0.2	0.4	0.6	0.8
f(x)	1.00000	1.22140	1.49182	1.82212	2.22554

- 25. Find a bound for the error in calculating $\int_0^{0.5} \frac{2}{x-4} dx$ using Simpson's rule and compare this to the actual error.
- 26. Use composite trapezoidal rule to calculate $\int_0^2 \frac{2}{x^2+4} dx$, n = 6
- 27. Show that there is a unique solution to the initial value problem y' = cost, $0 \le t \le 1$, y(0) = 1 and hence find the solution.
- 28. Use Runge Kutta method of order four to approximate the solution for the initialvalue problem, $y' = \cos 2t + \sin 3t$, $0 \le t \le 1, y(0) = 1$, with h = 0.5

(6 x 4 = 24 Marks)

Part D: Answer any two questions. Each carries fifteen marks.

- 29. a) For $f(x) = \cos x$, let $x_0 = 0$, $x_1 = 0.6$ and $x_2 = 0.9$, construct interpolating polynomial of degree two to approximate f(0.45) and find the absolute error.
 - b) Construct divided difference table for the following data
 - $x \qquad f(x)$
 - 1.0 0.7651977
 - 1.3 0.6200860
 - 1.6 0.4554022
 - 0.2818186
 - 2.2 0.1103623
- 30. Given the initial-value problem $y' = \frac{2}{t}y + t^2e^t$, $1 \le t \le 2$, y(1) = 0, with exact solution $y(t) = t^2(e^t e)$. Use Euler's method with h = 0.1 to approximate the solution and compare it with the actual values of y.

31. a) Use the most accurate three-point formula to determine each missing entry in the following table.

x	f(x)	f'(x)
1.1	9.025013	
1.2	11.02318	
1.3	13.46374	
1.4	16.44465	

b) Determine the values of *n* and *h* required to approximate $\int_0^2 x^2 \cos x \, dx$ to

within 10-4. Use:

i) Composite Trapezoidal rule.

ii) Composite Simpson's rule.

iii) Composite Midpoint rule.

(2 x 15 = 30 Marks)