D4BHC2304 (1	PAGES 3)	Reg. No
---------------------	----------	---------

Name:

(PTO)

FOURTH SEMESTER UG DEGREE EXAMINATION, APRIL 2025 (Regular/Improvement/Supplementary)

B.COM. HONOURS

GBCH4B18T: OPERATIONS RESEARCH

Time: 3 Hours	Maximum Marks: 80
Part A: Answer <i>all</i> the questions. Each carri Choose the correct answer.	ies <i>one</i> mark.
1. The optimal value of the objective function	is attained at the points:
(a) Given by intersection of lines repre	esenting inequations with axes only.
(b) Given by intersection of lines repre-	esenting inequations with X-axis only.
(c) Given by corner points of the feasi	ble region.
(d) At the origin.	
2. When Minimax and Maximin criteria match	hes, then:
(a) A fair game exists.	(b) Unfair game exists.
(c) Mixed strategy exists.	(d) Saddle point exists.
3. When the total of allocations of a transporta	ation problem match with supply and demand
values, the solution is called solut	ion.
(a) non-degenerate	(b) degenerate
(c) feasible	(d) infeasible
4. Essential characteristics of a decision mode	el are:
(a) States of nature	(b) Decision alternatives
(c) Payoff	(d) All of these
5. Game theory models are classified by the:	
(a) Number of players	(b) Sum of all payoffs
(c) Number of strategies	(d) All of these
Fill in the blanks.	
6. A situation in which a decision maker known	ows all of the possible outcomes of a decision
and also knows the probability associated v	vith each outcome is referred to as
7. A saddle point exists whenvalue =	value.
8. For finding an optimum solution in transpo	rtation problem method is
used.	
9. In a project network diagram, an activity is	represented by
10. The first step in solving Operations Research	ch problem is
	$(10 \times 1 = 10 \text{ Marks})$

SECTION B: Answer any eight questions. Each carries two marks.

- 11. Give any two uses of network techniques.
- 12. State the maximin value.
- 13. Define the pessimistic time estimate.
- 14. Give the mathematical formulation of a transportation problem.
- 15. State the maximization in assignment problem.
- 16. Why is game theory used?
- 17. Define an assignment Problem.
- 18. List out different criteria of decision making under uncertainty.
- 19. Define Laplace Criterion.
- 20. Mention any two limitations of Queuing theory.

 $(8 \times 2 = 16 \text{ Marks})$

Part C: Answer any six questions. Each carries four marks.

- 21. Explain the different components of decision problem.
- 22. Mean and standard deviation of a project duration are 300 and 100 days respectively. Within how many days would you expect to complete the project for which chance is:
 - (a) 87.9 % (b) 12.1%.
- 23. Draw the network diagram to the following activities.

Preceding activities
A
C
C
C
B, D
F
E
G, H, I

- 24. Differentiate between transportation and assignment problem.
- 25. Explain the meaning and origin of operations research with the help of definitions and examples.
- 26. List out the characteristics of a model.
- 27. Explain the different criteria of decision making under uncertainty.

28. Given the payoff table:

	S1	S2	S3
N1	6000	4000	-500
N2	5000	2000	1500
N3	400	1000	3000

Use the Hurwicz decision criterion with $\alpha = 0.7$ to find optimal decision.

 $(6 \ x \ 4 = 24 \ Marks)$

Part D: Answer any two questions. Each carries fifteen marks.

29. Solve the following problem using simplex method

Max:
$$Z = 5x_1 + 3x_2$$

Subject to $x_1 + x_2 \le 2$
 $5x_1 + 2x_2 \le 10$
 $3x_1 + 8x_2 \le 12$
 $x_1, x_2 \ge 0$

30. Assuming that the expected time are normally distributed, find the critical path and project duration.

		I	Days
Activity (i - j)	t_0	t_m	t_p
1 - 2	2	6	15
1 - 6	2	5	14
2 - 3	6	12	30
2 - 4	2	5	8
3 - 5	5	11	17
4 - 5	3	6	15
6 - 7	3	9	27
5 - 8	1	4	7
7 - 8	4	19	28

31. a) Solve the assignment problem:

Men/Job	A	В	C	D
1	7	5	8	4
2	5	6	7	4
3	8	7	9	8

b) Write down the steps involved in solving Assignment problem using Hungarian method.