(PAGES 3)

Reg.No.....

Name:

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2025 (Regular/Improvement/Supplementary) ECONOMICS AND MATHEMATICS (DOUBLE MAIN) GDMT4B04T: ABSTRACT ALGEBRA

Time: 2.5 Hours

Maximum: 80 Marks

SECTION A: Answer the following questions. Each carries 2 marks. (Ceiling 25 Marks)

- 1. Find all divisors of zero in \mathbb{Z}_{12} .
- 2. Let A be the set of all integers and let B be the set of all nonzero integers. On the set $S = A \times B$ of ordered pairs, define $(m, n) \sim (p, q)$ if mq = np. Show that \sim is an equivalence relation.
- 3. Find the inverse of (1, 2, 4, 5, 6).
- 4. Let G be a group. Prove that if $x^2 = e$ for all $x \in G$, then G is abelian.
- 5. Prove or disprove this statement: \mathbb{Z}_8^{\times} is cyclic.
- 6. Give an example of a nonabelian group of order 8.
- 7. Show that \mathbb{Z}_5^{\times} is not isomorphic to \mathbb{Z}_8^{\times} by showing that the first group has an element of order 4 but the second group does not.
- 8. Let $G = \langle a \rangle$ be a finite cyclic group of order n. If $m \in \mathbb{Z}$, then prove that $\langle a^m \rangle = \langle a^d \rangle$ where d = gcd(m, n)
- 9. Find the subgroup diagram of \mathbb{Z}_{125} . **PTO**

- 10. Prove that the set of all even permutations of S_n is a subgroup of S_n .
- 11. Give a homomorphism from $GL_n(\mathbb{R})$ onto \mathbb{R}^{\times} .
- 12. Let $\phi: G_1 \to G_2$ be a group homomorphism. Then prove that if $a \in G_1$ and a has order n, then the order of $\phi(a)$ in G_2 is a divisor of n.
- 13. Let N be a normal subgroup of G, and let $a, b, c, d \in G$. If aN = cN and bN = dN, then show that abN = cdN.
- 14. Let R be a commutative ring. Then prove that the set R^{\times} of units of R an abelian group under the multiplication of R.
- 15. State second isomorphism theorem

SECTION B: Answer the following questions. Each carries 5 marks. (Ceiling 35 Marks)

- 16. Let S be a set, and let ~ be an equivalence relation on S. Then prove that each element of S belongs to exactly one of the equivalence classes of S determined by the relation ~.
- 17. Let G be a group, and let $a \in G$. Then prove that the set $\langle a \rangle$ is a subgroup of G. Also prove that if K is any subgroup of G such that $a \in K$, then $\langle a \rangle \subseteq K$.
- 18. Find HK in \mathbb{Z}_{16}^{\times} if H = <[3] > and K = <[5] >.
- Prove that the groups ℝ (under addition) and ℝ⁺ (under multiplication) are isomorphic.
- 20. Find all subgroups of \mathbb{Z}_{24} and draw its subgroup diagram.
- 21. Show that if G is any group of permutations, then the set of all even permutations in G forms a subgroup of G.

- 22. Write down the formulas for all homomorphisms from \mathbb{Z} onto \mathbb{Z}_{12} .
- 23. Let $G = S_3$, the group of all permutations on a set with three elements, and let $G = \{e, a, a^2, b, ab, a^2b\}$, where $a^3 = e, b^2 = e$, and $ba = a^2b$. Find all left and right cosets of the subgroup $H = \{e, b\}$.

SECTION C: Answer any two questions. Each carries ten marks.

- 24. Prove that if a permutation is written as a product of transpositions in two ways, then the number of transpositions is either even in both cases or odd in both cases.
- 25. Let $S = R \{-1\}$. Define* on S by a * b = a + b + ab. Show that (S, *) is a group
- 26. Find all subgroups of D_4 and draw its subgroup diagram.
- 27. Let S be a commutative ring, and let R be a subset of S. Then prove that R is a subring of S if and only if
 - (i) R is closed under addition and multiplication;
 - (ii) if $a \in R$, then $-a \in R$;
 - (iii) R contains the identity of S.

(2 X 10 = 20 Marks)