Reg.No.....

Name:

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024

(Regular/Improvement/Supplementary)

MATHEMATICS: COMPLEMENTARY COURSE FOR PHYSICS, CHEMISTRY &

COMPUTER SCIENCE

GMAT4C04T: MATHEMATICS 4

Time:2Hours

MaximumMarks: 60

SECTION A: Answer the following questions. Each carries two marks.

(Ceiling 20 Marks)

1. Find $\lim_{n\to\infty} \frac{2^n}{5n}$

2. Find the radius of convergence and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{3^n x^n}{n!}$.

- 3. Find the Maclaurin series for $f(x) = \frac{1}{1+x}$.
- 4. Write the first shifting property of Laplace transform.
- 5. Find the Laplace Transform of $cos^2 at$.
- 6. Find the Inverse Laplace Transform of $\frac{12}{(s-3)^4}$.
- 7. Investigate the convergence of the series $\sum_{n=1}^{\infty} n! e^{-n}$.
- 8. Verify that $u = e^{-t} sinx$ is a solution of the One dimensional heat equation.
- 9. Estimate $\int_{-1}^{1} (x^2 + 1) dx$ using trapezoidal rule with n = 4.
- 10. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{(n+1)}}$.
- 11. Write the formula in the classical Runge-Kutta method of fourth order while solving the initial value problem y' = f(x, y), y(0) = 1.
- 12. Find $L(e^{-2t}u(t-3))$.

SECTION B: Answer the following questions. Each carries *five* marks.

(Ceiling 30 Marks)

- 13. Test for convergence of the sequence, $\{a_n\}$ where $a_n = \frac{1-2n}{1+2n}$. If convergent, find the limit.
- 14. State the Ratio Test for the convergence of a series of positive terms. Test for convergence of the series $\sum_{n=0}^{\infty} \frac{2^{n}+5}{3^{n}}$.
- 15. Find the Taylor series and Taylor polynomials generated by e^x at x = 0.
- 16. Find the Inverse Laplace Transform, h(t) of $H(s) = \frac{1}{s(s^2+4)}$ using convolution.
- 17. Find the Laplace Transform of $t^2 cos \omega t$.
- 18. Find the half range cosine series of $f(x) = x^2$ in the interval $0 < x < \pi$.
- 19. Solve the initial value problem y' = y, y(0) = 1 by applying Picard's Iteration.

SECTION C: Answer any one question. Each carries ten marks.

- 20. Solve the initial value problem y'' y = t, y(0) = 1, y'(0) = 1.
- 21. Find the Fourier series expansion of $f(x) = x + x^2$ in the interval $0 < x < 2\pi$.

 $(1 \times 10 = 10 \text{ Marks})$