D4BHM2204

(PAGES 3)

Reg.No	••
--------	----

Name:

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024 HONOURS IN MATHEMATICS

GMAH4B18T: NUMERICAL COMPUTING

GAZIN DIVI. NONEMOND COMI OTEKO				
Time: 3 Hours			Maximum Marks: 80	
PART A: Answer all the	questions. Each car	ries <i>one</i> mark.		
Choose the correct answer	er.			
1. What is the bisection	on method used for in	numerical analysis?		
a) Matrix inversion	a) Matrix inversion. b) Finding roots of equations.		g roots of equations.	
c) Integration.	tegration. d) Interpolation.		olation.	
2. Lagrange interpola	tion formula can be u	sed		
a) only for equally	spaced intervals.	b) only fo	r unequally spaced intervals.	
c) for both equally	and unequally spaced	l intervals. d) for une	qually intervals.	
3. Let $f(x) = x^2 - 3$	$x+1=0 \ and P_0=$	$= 0$. Then value of P_2 u	ising Newton Raphson	
method is		_		
a) 0.290164	b) -0.290164	c) 0.213703	d) None of the above.	
4. The error bound wl			•	
a) $\frac{h}{12}$ $f''(\xi)$	b) $\frac{h^2}{12} f''(\xi)$	$c)\frac{h^3}{12} f''(\xi)$	d) None of the above.	
5. Which of the follow	ving is a solution to y	y' = 6x, where $y = 2$ for	$\mathbf{or} \ \mathbf{x} = 0?$	
$a) y = 2x^3 + 2$	b) $y = 2x^3$	c) $y = 3x^2 +$	2 d) $y = 3x^2$	
Fill in the Blanks.				
6. Using Newton Rap	hson formula for $f(x)$	$(x) = x^3 + 4x - 6 = 0$	$P_0 = 1, P_2$	
7. The backward-diffe	erence formula in nun	nerical differentiation	is	
8. The Trapezoidal ru	le for approximating	$\int_a^b f(x)dx \text{ is } \underline{\hspace{1cm}}$		
9. The Newton's forw	ard interpolation for	nula is	<u>_</u>	
10. The error bound for	r the approximation o	of $f(x)$ with a polynon	nial of degree using Lagrange	
interpolation formu	la is			

 $(10 \times 1 = 10 \text{ Marks})$

(PTO)

PART B: Answer any eight questions. Each carries two marks.

- 11. Define Lipschitz condition for a function in \mathcal{R}^2 and give an example.
- 12. Use the forward-difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ using h = 0.05
- 13. Determine the linear Lagrange interpolating polynomial that passes through the points (4,2) and (3,1).
- 14. Construct the forward difference table for the following data:

x	f(x)
0	0
2	2
4	15
6	20
8	25
10	33

- 15. If (0) = 0, f(1) = 3 and f(2) = 8, find f(1.5).
- 16. Calculate $\int_0^2 e^x dx$ using Trapezoidal rule.
- 17. Use the Bisection method to find P_3 for $f(x) = 2x^3 3x 5$ on [0,2]
- 18. Use Euler's method to approximate the solution to $y' = y t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5, at t = 2 with h = 0.5.
- 19. Define polynomials. Give an example.
- 20. Write down the formula for Runge Kutta Fourth order method.

 $(8 \times 2 = 16 \text{ Marks})$

PART C: Answer any six questions. Each carries four marks.

- 21. Find an approximation to $\sqrt{3}$ using Bisection algorithm.
- 22. Find the second Lagrange interpolating polynomial for $f(x) = \sin x$ with nodes $x_0 = 0$, $x_1 = 1$, $x_2 = 2$
- 23. Find a bound for the error in calculating $\int_0^1 x^2 e^{-x} dx$ using Trapezoidal rule and compare this with the actual error.
- 24. A fourth-degree polynomial P(x) satisfies $\Delta^4 P(0) = 24$, $\Delta^3 P(0) = 6$ and $\Delta^2 P(0) = 0$ where $\Delta P(x) = P(x + 1) P(x)$. Compute $\Delta^2 P(4)$
- 25. Use the forward-difference formulas and backward-difference formulas to determine each missing entry in the following table.

x	f(x)	f'(x)
0.5	0.4794	
0.6	0.5646	
0.7	0.6442	

- 26. Find the error bound when approximating $f(x) = \ln(x+1)$ by a polynomial of degree two with $x_0 = 0$, $x_1 = 0.6$ and $x_2 = 0.9$ at x = 0.45
- 27. Given $3\frac{dy}{dx} + \sqrt{y} = e^{0.1x}$, y(0.3) = 5 and using a step size of h = 0.3, find the best estimate of $\frac{dy}{dx}(0.9)$ using Euler's method.
- 28. Use the Midpoint method with N=4, h=0.5, $t_i=0.5i$, and $w_0=0.5$ to approximate the solution of, $y'=y-t^2+1$, $0 \le t \le 2$, y(0)=0.5.

 $(6 \times 4 = 24 \text{ Marks})$

PART D: Answer any two questions. Each carries fifteen marks.

- 29. Find a root of $f(x) = 3x e^x = 0$ in [1,2] using:
 - a) Newton Raphson method.
 - b) Secant method.
 - c) Method of false position.
- 30. a) Use the most accurate three-point formula to determine each missing entry in the following table.

х.	f(x)	f'(x)
2.0	3.6887983	
2.1	3.6905701	
2.2	3.6688192	
2.3	3.6245909	

- b) Find $\int_0^{\frac{\pi}{4}} \sin x \ dx$ using closed and open Newton-Cotes formulas.
- 31. Use Modified Euler's method to approximate the solutions for the initial-value problem, $y' = \frac{2-2ty}{r^2-1}$, $0 \le t \le 1$, y(0) = 1, with h = 0.1.

 $(2 \times 15 = 30 \text{ Marks})$