D4	R	HN	1 2	21	13

P	A	GES	4)
ν.	4 1	·ULU	.,

•••

Name:	•••••
14amc.	***************************************

(PTO)

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024 HONOURS IN MATHEMATICS

GMAH4B17T: LINEAR PROGRAMMING AND APPLICATIONS

Time: 3 Hours			Maximum Marks: 80		
PART A: Answer all	he questions. Each car	ries <i>one</i> mark.			
Choose the correct an	swer.				
1. The closed ball of r	adius $r > 0$ centered at	the origin in \mathbb{R}^1 is			
A) Circle.	B) Sphere.	C) Disc.	D) line segment.		
2. An unconstrained li	near programming prob	olem.			
A) Has no nonn	egativity constraint.	B) Has nonneg	B) Has nonnegativity constraint.		
C) has many co	nstraints.	D) has only on	e constraint.		
3. For any pair of feas	ible solutions of dual ca	nonical linear progr	amming problem.		
A) $g \ge f$	B) $g \le f$	C) $g = f$	D) $g \neq f$		
4. In a matrix game as	ny mixed strategy contai	ning an entry of 1 is	called		
A) probabilistic	strategy.	B) pure strateg	yy.		
C) column strat	egy.	D) row strateg	D) row strategy.		
5. Solution of the give	en transportation probler	n is			
8 9 1	8 28 1 62 2				
A)786	B) 678	C) 876	D) 687		
Fill in the Blanks.					
6. Canonical slack ma	aximization linear progr	amming problem is.			
7. Basic solution is o	btained by				
8. "Any unbounded li	near programming probl	lem has an unbounde	ed constraint set". The		
Statement is	(True/False)				
9. The duality equation	n is				
10."If a canonical mini	mization linear program	ming problem is info	easible, then the dual		
canonical maximiz	ation linear programmin	ng problem is unbou	inded." The		
Statement is	(True/False)				
			$(10 \times 1 = 10 \text{ Marks})$		

PART B: Answer any eight questions. Each carries two marks.

- 11. Draw and shade a bounded polyhedral convex subset in \mathbb{R}^2 .
- 12. Define hyperplane. Give an example.
- 13. Pivot on 5 in the canonical maximum tableau given below.

- 14. If a canonical maximization linear programming problem is unbounded, prove that the dual canonical minimization linear programming problem is infeasible.
- 15. State duality theorem.
- 16. Consider the canonical maximization linear programming problem given below:

$$Maximize f(x_1, x_2) = x_1$$

$$x_1 + x_2 \le 1$$

$$x_1 - x_2 \ge 1$$

$$x_2 - 2x_1 \ge 1 \qquad x_1, x_2 \ge 0$$

State the dual canonical minimization of the linear programming problem.

- 17. State von Neumann mini-max theorem.
- 18. Let $x, y \in \mathbb{R}$ and consider the matrix game given below:

$$\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}$$

Determine a necessary and sufficient condition for the matrix game above to reduce by Domination to a single entry.

- 19. Explain briefly the North West corner method to obtain the initial basic feasible solution in transportation problem.
- 20. What is an assignment problem.

 $(8 \times 2 = 16 \text{ Marks})$

PART C: Answer any six questions. Each carries four marks.

21. Apply the simplex algorithm to solve the maximum tableau

$$\begin{array}{c|cccc}
x_1 & x_2 & -1 \\
\hline
1 & 2 & 20 \\
2 & 2 & 30 \\
2 & 1 & 25 \\
\hline
200 & 150 & 0
\end{array} = -t_A$$
=-t_B

22. Show that the given LPP is infeasible

Maximize
$$f(x, y) = 3x + 2y$$

Subject to
$$2x - y \le -1$$

$$x-2y\geq 0$$

$$x, y \ge 0$$

23. Solve the noncanonical linear programming problem given below:

Maximize
$$f(x, y, z) = x - y + z$$

$$x + y \ge 2$$

$$z-y \ge 3$$

$$2x + z \leq 8$$

- 24. Write the dual simplex algorithm for minimum tableaus.
- 25. Solve the following dual canonical linear programming problem:

- 26. Prove that a pair of feasible solutions of dual canonical linear programming problem exhibit complementary slackness if and only if they are optimal solutions.
- 27. Solve the transportation problem given below:

	M_1	M_2	M_3	
W_1	2	1	2	40
W_2	9	4	7	60
W_3	1	2	9 10	
	40	50	20	110

28. Solve the assignment problem given below:

 $(6 \times 4 = 24 \text{ Marks})$

(PTO)

PART D: Answer any two questions. Each carries fifteen marks.

29. Solve the canonical linear programming problem given below using the simplex algorithm.

x	y	Z	-1	
1	2	1	4	$=t_1$
2	1	5	5	$=t_2$
3	2	0	6	$=t_3$
1	2	3	0	= f

30. Find the von Neumann value and optimal strategy for each player in the matrix game given below.

$$I\begin{bmatrix} -1 & 0 & 2 & -2 & 0 \\ 1 & -2 & -4 & 2 & 2 \\ 0 & -1 & 1 & 1 & -1 \\ 0 & 5 & 4 & 2 & 0 \end{bmatrix}$$

31. Using Hungarian algorithm solve the following assignment problem:

4	6	5	10
10	9	7	13
7	11	8	13
12	13	12	17

 $(2 \times 15 = 30 \text{ Marks})$