D41	BHN	12	202
------------	-----	-----------	-----

(PAGES 2)

Reg.	No
------	----

Name:

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024 HONOURS IN MATHEMATICS

GMAH4B16T: CALCULUS IV					
Time: 3 Hours			Maximum Marks: 80		
PART A: Answer all the	e questions. Each	n carries <i>one</i> mark.			
Choose the correct answ	er.				
1. The function $f(x, y) =$	x3-3xy2 has critic	al points at			
A) (0,0) only		B) (1,-1) and (-1,1) only			
C) (1,1) and (-1,-1)	only	D) (0,0), (1, -1) and (-1,1)			
2. What is the primary p	urpose of triple ir	ntegrals?			
A) Calculating the vo	olume under a sur	face in three dimension	ns.		
B) Finding the area u	nder a curve in tv	wo dimensions.			
C) Measuring the len	gth of a curve.				
D) Evaluating a line	integral.				
3. Which of the following	g statements abou	it the Jacobian determin	nant is true?		
A) Always negative.			B) A scalar value.		
C) Vector quantity.		D) Independent of choice of co-ordinates.			
4. The curl of the vector f	$ield \boldsymbol{\mathcal{F}} (x,y,z) = y$	i for x≥ 0 is			
A) k	B) -k	C) 2k	D) 0		
5. A surface S which has	a unit normal vec	tor that varies continuo	ously over S is called		
A) Parametric surface	e B) Orientable	e surface C) Smooth s	surfacee D) Rough Surface		
Fill in the Blanks.					
6. ∇f(a,b) is	to the level (curve $f(x, y) = c$ at (a, b)	o).		
7. If $f(x, y) \ge f(a,b)$ for a	-				
8. If g is defined in a regi	ion R in the xy-pl	ane, then the area of th	the surface $y = g(x,z)$ is $A =$		
	•	•	is defined by div F =		
10. The flux of a vector field	ld F across an ori	ented surface in the dir	rection of the unit		
normal n is			/10 - 1 - 10 R# 1 \		
•			(10 x 1 =10 Marks)		

PART B: Answer any eight questions. Each carries two marks.

- 11. Find the level curve of $f(x, y) = x^2 y^2$ passing through the point (5,3).
- 12. Explain the second derivative test for relative extrema.
- 13. State Lagrange's theorem.
- 14. Evaluate $\iint_R 2 dA$, where $R = [-1,3] \times [2,5]$.
- 15. State Fubini's theorem for rectangular regions.

(PTO)

- 16. Find the area of the surface S which is the part of the plane 2x + 3y + z = 12 that lies above the rectangular region $R = \{(x,y) / 0 \le x \le 2, 0 \le y \le 1\}$.
- 17. A vector field \mathcal{F} in \mathbb{R}^2 is defined by $\mathcal{F}(x,y) = -y\mathbf{i} + x\mathbf{j}$. Describe \mathcal{F} and sketch few vectors representing the vector field.
- 18. What is a conservative vector field? Give an example.
- 19. Find the work done on a particle that moves along the quarter circle of radius 1 centered at the origin in a counter clockwise direction from (1,0) to (0,1) by the force field $\mathcal{F}(x, y, z) = -y\mathbf{i} + x\mathbf{j} + z\mathbf{k}$.
- 20. Find a parametric representation for the cone $x^2 + y^2 = z^2$.

 $(8 \times 2 = 16 \text{ Marks})$

PART C: Answer any six questions. Each carries four marks.

- 21. Find the equations of the tangent plane and normal line to the ellipsoid with equation $4x^2 + y^2 + z^2 = 16$ at the point $(1,2,\sqrt{2})$.
- 22. Evaluate $\int_{0}^{1} \int_{0}^{x} \int_{0}^{x+y} x \, dz \, dy \, dx$.
- 23. Evaluate $\iint_R (1 2xy^2) dA$, where $R = \{(x, y) / 0 \le x \le 2, -1 \le y \le 1\}$.
- 24. Find the volume of the solid that lies below the hemisphere $z = \sqrt{9 x^2 y^2}$, above the xyplane, and inside the cylinder $x^2 + y^2 = 1$.
- 25. Evaluate $\int_C xydx yzdy + x^2dz$, where C consists of the line segment from (0,0,0) to (1,1,0) and the line segment (1,1,0) to (2,3,5).
- 26. Find the area of that part of the plane y + z = 2 inside the cylinder $x^2 + z^2 = 2$.
- 27. Show that $\mathcal{F}(x,y,z)=2xyz^2\mathbf{i}+x^2z^2\mathbf{j}+2x^2yz\mathbf{k}$ is conservative and find a function f such that $\mathcal{F}=\nabla f$.
- 28. Find the flux of the vector field $\mathcal{F}(x, y, z) = y \mathbf{i} + x \mathbf{j} + 2z \mathbf{k}$ across the unit sphere $x^2 + y^2 + z^2 = 1$.

 $(6 \times 4 = 24 \text{ Marks})$

PART D: Answer any two questions. Each carries fifteen marks.

- 29. Find the maximum and minimum values of the function $f(x, y) = x^2$ 2y subject to $x^2+y^2 = 9$.
- 30. Evaluate $\iint_R \cos(\frac{x-y}{x+y}) dA$, where R is the trapezoidal region with vertices (1,0),(2,0),(0,2) and (0,1).
- 31. a) Find the gradient vector field of the function $f(x, y, z) = \frac{-k}{\sqrt{x^2 + y^2 + z^2}}$ and hence deduce that the inverse square field \mathcal{F} is conservative.
 - b) Evaluate $\iint_S \frac{x-y}{\sqrt{2z+1}} dS$, where S is the surface represented by $\mathbf{r}(\mathbf{u}, \mathbf{v}) = (\mathbf{u} + \mathbf{v})\mathbf{i} + (\mathbf{u} \mathbf{v})\mathbf{j} + (\mathbf{u}^2 + \mathbf{v}^2)\mathbf{k}$ where $0 \le u \le 1$ and $0 \le v \le 2$.

 $(2 \times 15 = 30 \text{ Marks})$