D4F	3HN	122	01
-----	-----	-----	----

(PAGES 2)

Reg. No.....

Name:

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024 HONOURS IN MATHEMATICS

GMAH4B15T: REAL ANALYSIS II

Time: 3 Hours Maximum Marks: 80

PART A: Answer all the questions. Each carries one mark.

Choose the correct answer.

1. Which of the following functions are continuous on [0,1]

A)
$$\frac{1}{x}$$

B)
$$\frac{1}{e^x}$$

C)
$$\frac{1}{\sqrt{x}}$$

D) cot x

2. Every convergent sequence is.....

A) absolutely convergent.

B) monotone.

C) oscillating.

D) bounded.

3. The value of $\int_0^1 x \, dx$

A) 0

B) 1

C) $\frac{1}{2}$

D) $\frac{1}{\sqrt{2}}$

4. Value of $\lim_{n\to\infty} \frac{nx}{1+(nx)^2}$.

A) 0

B) 1

C) $\frac{1}{2}$

D) -1

A) 0

B) 1

C) $\frac{1}{2}$

D) -1

Fill in the Blanks.

- 6. The maximum value of $x^2 + 10$ in [-1,1] is
- 7. The norm of partition P = (0,1.5,2,3.4,4) of [0,4] is.....
- 8. Value of $\lim(x^n)$ for $x \in (-1,1)$ is
- 9. The formula for the series $\sum_{n=1}^{\infty} r^{2n}$ when $|r| \le 1$ is.....
- 10. $\int_{-5}^{5} sgn(x)dx = \dots$, where sgn(x) denotes the Signum Function.

 $(10 \times 1 = 10 \text{ Marks})$

PART B: Answer any eight questions. Each carries two marks.

- 11. Define Lipchitz function. Give an example.
- 12. Show that that the function $f(x) = \sin(\frac{1}{x})$, $x \neq 0$ is not continuous at 0.
- 13. Show that $g(x) = \frac{1}{x}$ is not uniformly continuous on A =[0,1].
- 14. Show that if $\sum a_n$ is absolutely convergent, then it is convergent.

- 15. Evaluate $\int_1^9 \frac{\sin \sqrt{t}}{\sqrt{t}} dt$.
- 16. Show that f(x) = k, $\forall x \in [a, b]$ is Riemann integrable.
- 17. State true or false: Every bounded function is Riemann integrable. Justify your answer.
- 18. Let $f_n : [0,1] \to \mathbb{R}$ be a sequence of bounded functions. i.e, $\forall n, \exists M_n$ such that $|f_n(t)| < M_n$, $\forall t \in [0,1]$. If (f_n) uniformly converges to f, Show that f is bounded on [0,1].
- 19. Check whether (f_n) where $f_n(x) = \frac{x}{n} \forall x \in \mathbb{R}$ is uniformly convergent.
- 20. Find the first and second partial sum of the series $\sum \frac{1}{2^{n-1}}$

 $(8 \times 2 = 16 \text{ Marks})$

PART C: Answer any six questions. Each carries four marks.

- 21. State and prove Bolzano's intermediate value theorem.
- 22. If $f: I \to \mathbb{R}$ is continuous on I = [a.b], a closed and bounded interval, show that f is bounded on I.
- 23. Show that the equation $x = \cos x$ has a solution in the interval [0,2].
- 24. Let g: $[0,3] \rightarrow \mathbb{R}$ be defined by g(x) = 1 for $0 \le x \le 1$ and g(x) = 2 for $1 < x \le 3$. Find $\int_0^3 g$.
- 25. State and prove Fundamental theorem of Calculus first form.
- 26. Show that $\sum \frac{\cos \theta}{n^p}$ is uniformly convergent for all real values of $\theta, p > 1$.
- 27. Prove that sequence (f_n) of bounded functions on $A \subseteq \mathbb{R}$ converges uniformly on A to f if and only if $||f_n f||_A \to 0$.
- 28. Show that the sequence $(\frac{x^n}{(1+x^n)})$ does not converge uniformly on [0, 2] by showing that the limit function is not continuous on [0, 2].

 $(6 \times 4 = 24 \text{ Marks})$

PART D: Answer any two questions. Each carries fifteen marks.

- 29. State and prove Maximum Minimum theorem.
- 30. State and prove additivity theorem of Riemann integral.
- 31. Let (f_n) be a sequence of functions in R[a, b] and suppose that (f_n) converges uniformly on [a,b] to f. Show that $f \in R[a,b]$ and $\int_a^b f = \lim_{n \to \infty} \int_a^b f_n$.

 $(2 \times 15 = 30 \text{ Marks})$