Th 4	-	TA AF	TENA	4	00
D 4	13	IV.	1 2		UZ

17

Reg.No.....

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(Regular/Improvement/Supplementary)

MATHEMATICS: COMPLEMENTARY COURSE FOR PHYSICS, CHEMISTRY & C S GMAT4C04T: MATHEMATICS - 4

Time: 2 Hours

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries *two* marks. (Ceiling 20 Marks)

- 1. Show that the sequence $\left\{\frac{\ln (n)}{n}\right\}$ converges to zero.
- 2. State the sandwich theorem of sequence.
- 3. Show that series $\sum \frac{1-n}{1+2n}$ diverges.
- 4. Use the root test to check the convergence of $\sum \frac{1}{n^n}$.
- 5. Show that the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges absolutely for all x.
- 6. Find the Lapalce transformation of Sin(3t). Cos(5t).
- 7. Define the unit step function u(t-a). Draw the graph of the function 1 u(t-a).
- 8. Define the Dirac's Delta function and WRITE its Laplace transformation.
- 9. Define a periodic function. Find the fundamental period of $tan(\pi x)$.
- 10. Write the One-dimensional Wave equation and One-dimensional Heat equation.
- 11. Verify whether the function $u = e^x \sin y$ is a solution of the Two-dimensional Laplace's equation.
- 12. Write the formula in the classical Runge-Kutta method of fourth order while solving the ivp y' = f(x,y), $y(x_0) = y_0$.

SECTION B: Answer the following questions. Each carries *five* marks. (Ceiling 30 Marks)

- 13. Drop a ball from a height 'a' meters above the surface. Each time the ball hits the surface after falling a distance h, it rebounds a distance rh, where r is positive but less than 1. Find the total distance travelled by the ball before it comes to rest.
- 14. Find the sum of the telescoping series $\sum_{n=1}^{\infty} \frac{1}{n \cdot (n+1)}$
- 15. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$
- 16. Find the Taylor series and Taylor polynomials generated by $f(x) = \sin x$ at x=0.
- 17. State the Convolution theorem. Using it find the inverse Laplace transform of $\frac{s}{(s+1)(s^2+9)}$
- 18. Find the Laplace transformation of f(t) = t.cosht.
- 19. Use Simpson's rule with n = 4 to approximate $\int_0^1 5x^4 dx$.

SECTION C: Answer any one question. Each carries ten marks.

- 20. Using Laplace transformation, solve the ivp y''+y'-6y=1, y(0)=0, y'(0)=1.
- 21. Find the Fourier series of the function f(x) = x, $-\pi < x < \pi$ and $f(x+2\pi) = f(x)$.